

VOODOO AND DEVICE DRIVER
PROGRAMMER’S REFERENCE MANUAL

…. 1101010100100010 ….

“If you think the universe is big, you should see the source code.” – Frank and Ernest

Scott Streit

Astronomical Research Cameras, Inc
02/26/2003

Table Of Contents

I. DESCRIPTION...3
II. VOODOO API...3
III. DEVICE DRIVER INSTALLATION..3
IV. VOODOO INSTALLATION...5
V. APPLICATION STRUCTURE...5
VI. IMAGE BUFFER...6
VII. CAMERA CONTROL..6

Exposure Command Sequence ..6
VIII. PCI BOARD - DEVICE DRIVER INTERACTION...7

1. Configuration Registers ..8
Control/Status Registers ...8
Host Interface Control Register (HCTR)..9
Host Interface Status Register (HSTR)...9

VIIII. VECTOR COMMANDS..9
X. NORMAL (ASCII) COMMANDS ...10
XI. THE VOODOO C LIBRARY..16
XII. CONTROLLER CONFIGURATION PARAMETERS ...18
XIIII. DEVICE DRIVER USAGE (UNIX & LINUX) ..29

1. open()..29
2. close() ...30
3. mmap()..30
4. munmap()...31
This function frees the image buffer memory..31
5. ioctl() ...31

XV. DEVICE DRIVER USAGE (WINDOWS 2000) ...32
1. CreateFile() ...32
2. CloseHandle() ...32
3. DeviceIoControl()..33

XVI. APPENDIX A ...34
1. Controller Setup Sequence Pseudo Code ...34
2. Exposure Sequence Pseudo Code...36

XVII. C APPLICATION INTERFACE ...39
XVIII. REVISION HISTORY ...40

I. DESCRIPTION
 This document describes the commands an application would use to obtain an image from a device
connected to the new PCI board. The device driver contains four functions and a number of commands useful for
communicating with the connected device. The PCI board's digital signal processor (DSP) contains a group of
commands for obtaining image data. Each DSP command is a sequence of device driver commands. The
commands and their device driver sequences are described here.

II. VOODOO SOURCE DOCUMENTATION
Developers can find browsable javadoc documentation in the xx/Voodoo/Documents directory.

III. DEVICE DRIVER INSTALLATION

Solaris Installation

z Unpack the device driver files, this will create a directory called astropciV1.7 (or something similar):
 gunzip astropci_solaris.tar.gz
 tar xvf astropci_solaris.tar

z Become superuser and run the install script:
 ./Install

z Enter the PCI slot number when prompted. For multiple boards, continue to enter PCI slot numbers as
prompted. Hit “return” when finished.

z To remove the driver, use the unix command: rem_drv astropci

Linux Installation

z This driver has been tested under Redhat 7.2 (kernel 2.4.2-2) and Redhat 9.0 (kernel 2.4.20-8). It WILL
NOT work with older kernels.

z In order for this driver to function, the following line must be set in LILO (/etc/lilo.conf):

append="mem=xxxM", where xxx is the amount of RAM you DO NOT want to use for an image buffer.
So, if your computer has 128Mb of RAM and you want to have a 28Mb image buffer, you must have
the following line in LILO (/etc/lilo.conf): append="mem=100M".

Example:

1. Become superuser/root.

2. Edit /etc/lilo.conf to have the append="mem=xxxM" line:

image=/boot/vmlinuz-2.4.2-2

 label=linux
 read-only
 root=/dev/hda5
 append="mem=100M"

3. From a tcsh, execute the command: lilo -v

4. Reboot the computer.

z Create the directory (/xxx) where you want to keep the driver files.

z Copy the driver tar file to the new directory and unpack it:
 gunzip astropci_x_x_x.tar.gz
 tar xvf astropci_x_x_x.tar

z Become superuser and run the install script:
 ./astropci_load

IMPORTANT NOTE: The Linux driver currently has no support for loading the driver at system
startup. So the ./astropci_load script must be run after every system boot.

z To unload the driver, type:

./astropci_unload

Windows 2000 Installation

z Unzip the device driver files.

IMPORTANT: If you are re-installing or upgrading the driver you must first delete the windows cached
.inf and .pnf files. During installation, Windows stores its own copy of the driver, which it will use the
next time you try to re-install. To prevent Windows from using this old copy you must delete it before re-
installing or upgrading. The files are generally called oem0.inf, oem1.inf, … and oem0.pnf, oem1.pnf, …
And can be found in C:\Windows\inf\. Be sure to only delete the oem# files that contain references to
Astronomical Research Cameras, Inc.

z The Win2k driver supports Plug-N-Play. So there are two methods for installation.

1. Install the PCI board and startup the computer, the new board should be detected and you will
be prompted for the driver installation.

2. From control panel, choose “Add New Hardware”, again you will be prompted for the driver

installation.

3. Reboot.

z NOTE: The driver install will modify the Windows registry to support a large image buffer. This

MUST be done. The default amount of memory to set aside is 32M (0x2000000). If you want more
memory, you can modify it by doing the following: WARNING: Incorrectly modifying registry values
can cause your machine to stop working.

1. Run regedit from Start->Run.

2. In the registry, modify

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Session Manager\Memory
Management\NonPagedPoolSize to be a value larger than the buffer you want to use. DO NOT
make the value more than 80% of your total RAM. For example, to set aside 32M of nonpaged
memory, set the value to 0x2000000.

3. Reboot for changes to take affect.

IV. VOODOO INSTALLATION

Solaris and Linux Installation

z Create a temporary directory and unpack the Voodoo files (do not untar the voodoofiles.tar file):
 gunzip voodoo.tar.gz
 tar xvf voodoo.tar

z Become superuser and run the install script:
 ./Install

z Enter the directory where you want Voodoo installed. The default is /opt/voodoo.
z Modify your .cshrc to contain the following, where $install_dir is the directory where Voodoo is

installed and $system is either “unix” or “linux”:
setenv LD_LIBRARY_PATH $install_dir/Voodoo/Clib/$system/lib
setenv CLASSPATH $install_dir/Voodoo/classes:$install_dir/packages

z To un-install Voodoo, just delete the directory where Voodoo was installed. The default is

/opt/voodoo.

Windows 2000 Installation

z Create a temporary directory and unzip the Voodoo files.

z Run the file “Setup.exe” in the “disk1” directory.

V. APPLICATION STRUCTURE
Voodoo consists of two layers, the JAVA layer and the C library layer. Voodoo’s C library supports device

driver level system calls (because JAVA doesn’t) and any other operations which may be difficult or too slow with
JAVA (for example, memory mapping of the image buffer). While JAVA is platform independent, the C system
calls are not. So the C library must be compiled separately on the supported operating systems. Likewise, the
device driver is also system dependent. While the underlying system calls and structure are different for the device
drivers on the UNIX, LINUX, and Windows 2000 operating systems, the interface between Voodoo and the device
drivers is identical across all systems.

VI. IMAGE BUFFER
The image buffer is created by the device driver and is managed differently on the Solaris, Linux, and

Windows 2000 systems. On Solaris machines, the image buffer is not created until a user application calls the
memory mapping function, mmap(), at which time the device driver creates the image buffer with the size
specified by the user application. The image buffer start address is then passed by the device driver to the PCI
board using the INITIALIZE_IMAGE_ADDRESS (0x91) vector command. The image address is passed in two
segments. The lower 16 bits of the image buffer address are sent first, followed by the upper 16 bits.

On Linux machines, the image buffer is created from a sequential segment of memory that is set aside
during system boot by modifying /etc/lilo.conf, as specified in the Linux device driver installation instructions.
The image buffer is created and mapped when a user application calls the memory mapping function mmap().
The image address is passed to the PCI board in the exactly the same way it is for the Solaris system. It is
important to note that although the user application specifies how much memory to map for the image buffer in the
mmap() function, it is ultimately the amount of memory that resides in the sequential memory, segment set aside at
boot time, that determines the maximum size of the image buffer. The image buffer size must be less than the
memory segment set aside using /etc/lilo.conf.

On Windows 2000 machines, the image buffer is created during the device driver installation. The user
application then merely maps the pre-created image buffer using the ASTROPCI_MMAP DeviceIoControl()
command. During driver installation the registry key “HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\
Control\Session Manager\Memory Management\NonPagedPoolSize” is modified to be equal or larger than the
image buffer size you want to use (the default is 34MB). Windows has a OS defined upper limit on the maximum
size of memory that can be allocated. For more information see the document: “Windows 2000/XP Device Driver
DMA Limits”. Again, the image address is passed to the PCI board in the exactly the same way it is for the Solaris
system.

VII. CAMERA CONTROL
The camera is controlled through a series of commands (see “Command Description” document) that are

passed by a user application, such as Voodoo, to the device driver, which in turn sends the commands to the
hardware (PCI board). All commands are passed from the user application to the device driver using the ioctl
(DeviceIoControl on Win2K) driver function. The driver then writes all necessary command information to a
mapped memory location on the PCI board (see the PCI BOARD – DEVICE DRIVER INTERACTION section).
The PCI board then forwards any necessary commands to the controller. Every command returns a reply of one
kind or another. A reply can be a data value or one of the following: timeout, done, error, system reset, readout, or
busy. After sending a command, the device driver waits for one of the replies by polling a register (HSTR) on the
PCI board. A timeout is incurred if no reply occurs after X number of polls. Before a command can be sent or a
reply read, however, a bit in the host status register (HSTR) on the PCI board must be checked. This bit
determines whether the PCI boards input and output FIFOs are empty or full respectively. This FIFO bit checking
is automatically performed by the device driver.

Exposure Command Sequence
 The following is a top-down sequence representing the interaction between the host computer (user
application), PCI board, and the camera controller.

Host Computer PCI Board Controller

T
 I

M
E

Send a “Start Exposure” command
(SEX) to the controller.

 Receive the “Start Exposure” and
send it along to the controller.

 Receive the “Start Exposure”
command (IIA). Send a command
to the PCI board to initialize its
pixel counter for a new image.

 Set PCIADDR = BASEADDR
and NPIXELS = 0. Reply (DON)
to the host computer that the
exposure has started.

 Clear the array and stop the
clocks. Open the shutter if
needed. Start the timer countdown
for the exposure. When the timer
counts down, send a “Read
Array” command (RDA) to the
PCI board with the dimensions of
the image.

Receive the “Read Array”
command, set up to read the
indicated number of pixels. Write
image data over the computer bus
as its received and increment the
pixel counter as pixels are
transferred to the host computer.

Close the shutter if needed, and
delay for it to be closed. Calculate
readout parameters (split serial or
parallel, binning, subarray). Skip
over unwanted rows (if in
subarray mode). Clear out the
serial shift register. Parallel shift
one or more rows (if parallel
binning). Skip over unwanted
columns (if in subarray mode).
Read desired number of pixels
and transmit them to the PCI
board. Skip over unwanted
columns (if in subarray mode).
Read desired number of bias
pixels and transmit them to the
PCI board. Loop back to the
parallel shifting until done.

Receive a done (DON) reply that
the exposure has started.
Continuously interrogate the PCI
board status and pixel counter. If
the PCI board is not in readout and
the exposure time is > 1 second,
then also continuously read the
elapsed exposure time from the
controller. Sleep for 25ms after
each interrogation. Continue on
when the pixel counter on the PCI
board reaches it’s target value or
when an interrupt is received.

Interrupt when done if desired.

Continue on. Deinterlace and save
the image data.

VIII. PCI BOARD - DEVICE DRIVER INTERACTION
 The device driver communicates with the PCI board through a series of registers located on the PCI board.
The registers are "mapped" by the device driver to produce an equivalent set of virtual registers that the device
driver can access as though it were communicating with the PCI board registers directly. The registers are broken
down into two segments: the configuration registers, and control/status registers.

1. Configuration Registers

 This is a set of 64 registers (DWORDS) used for configuration, initialization, and error handling for the
PCI DSP. These registers are not manipulated by the user. The configuration space header is shown below.

Configuration Space Header
ADDRESS REGISTER

0x0000 Device Id Vendor Id
0x0004 Status Command
0x0008 Class Code Revision Id
0x000C BIST Header Type Latency Timer Cache Line Size
0x0010
0x0014
0x0018
0x001C
0x0020
0x0024

Base Address Registers

0x0028 Cardbus Pointer
0x002C Subsytem Id Subsystem Vendor Id
0x0030 Expansion ROM Base Address
0x0034 Reserved
0x0038 Reserved
0x003C Max_Lat Min_Gnt Interrupt Pin Interrupt Line

Control/Status Registers

 These 32-bit registers are used to send control commands and receive status replies to and from the PCI
board. There are two command registers, the Host Command Vector Register (HCVR) and the Command Data
Register. The HCVR is used to send vector commands, whereas the Command Data register will take any of the
ascii commands supported by the DSP. The Command Data register is also used to send vector command
arguments to the PCI board and for setting the image buffer address.

The complete list of registers is as follows:

Host/DSP Control and Status Registers
ADDRESS Register

0x0000 DSP Reserved

0x0004 DSP Reserved

0x0008 DSP Reserved

0x000C DSP Reserved

0x0010 Host Interface Control Register (HCTR)

0x0014 Host Interface Status Register (HSTR)

0x0018 Host Command Vector Register (HCVR)

0x001C Reply Buffer

0x0020 Command Data

Host Interface Control Register (HCTR)
 Only four bits of this register are used. Bits 8, 9, 11 and 12 are used to set the PCI bus data size for
commands and replies. Setting bit 8 to 1 and bit 9 to 0 converts 32-bit PCI commands into 24-bit DSP data. So the
most significant byte (MSB) of the 32-bit word is lost. Setting bit 11 to 1 and bit 12 to 0 converts 24-bit DSP reply
data into 32-bit PCI data. So the most significant byte (MSB) is filled with zeros.

Host Interface Status Register (HSTR)
 This register communicates status information about the current state of the system. Three bits are used for
reply values and two bits are used to determine if the PCI DSP fifo is available for input or output.

Summary:
Bit 1 = 1 Host input FIFO is empty, can send command
 0 Host input FIFO is not empty, cannot send command

Bit 2 = 1 DSP output FIFO is not empty, can read data
 0 DSP output FIFO is empty, no data

Bits 3, 4, 5
 = 0 TIMEOUT (Timeout)
 = 1 DON (Done)

= 2 RDR (Read Reply Value)
= 3 ERR (Error)
= 4 SYR (System Reset)
= 5 READOUT (Readout)
= 6 BUSY (PCI Busy)

VIIII. VECTOR COMMANDS

Vector commands are those that must be executed immediately. These commands interrupt the DSP
processor and are serviced immediately. The command values, arguments and descriptions are listed in the table
below. Depending on the command, there may be optional data values. The data values are sent with separate
ioctl (DeviceIoControl on Win2K) calls before the command call.
Description Command Argument1 Argument2
CLEAR_INTERRUPT 0x8073
READ_PIXEL_COUNT 0x8075
PCI_PC_RESET 0x8077
ABORT_READOUT 0x8079
BOOT_EEPROM 0x807B
READ_NUMBER_OF_FRAMES_READ 0x807D

READ_HEADER 0x81
RESET_CONTROLLER 0x87
INITIALIZE_IMAGE_ADDRESS 0x91 Image Address Least

Significant 16 Bits
Image Address Most
Significant 16 Bits

WRITE_COMMAND 0xB1
PCI_DOWNLOAD 0x802F

The vector commands are used with the following function calls:

Unix & Linux
Data contains the optional data value. Command contains a valid vector command value.

ioctl(pci_fd, ASTROPCI_HCVR_DATA, &data); [optional data value]
…
ioctl(pci_fd, ASTROPCI_SET_HCVR, &command);

Windows 2000
In the first DeviceIoControl call, inBuffer contains the optional data value and outBuffer contains any
returned data value. In the second DeviceIoControl call, inBuffer contains a valid vector command value
and outBuffer contains any returned value.

[optional data value]
pci_request = CTL_CODE(ASTROPCI_DEVICE, (0x800 | ASTROPCI_ HCVR_DATA),

METHOD_BUFFERED, FILE_ANY_ACCESS);
DeviceIoControl((HANDLE)pci_fd, pci_request, &inBuffer, sizeof(inBuffer),

&outBuffer, sizeof(outBuffer), &bytesReturned, NULL));
…
pci_request = CTL_CODE(ASTROPCI_DEVICE, (0x800 | ASTROPCI_SET_HCVR),

METHOD_BUFFERED, FILE_ANY_ACCESS);
DeviceIoControl((HANDLE)pci_fd, pci_request, &inBuffer, sizeof(inBuffer),

&outBuffer, sizeof(outBuffer), &bytesReturned, NULL));

X. NORMAL (ASCII) COMMANDS

All “normal” commands are 3 character ascii sequences passed to the device driver through the ioctl
(DeviceIoControl on Win2K) command. The commands are sent via a 6 element array containing all the necessary
data. All unused elements must be set to -1 (undefined). The structure of the array is as follows:

 cmd_data[0] = header
 cmd_data[1] = command
 cmd_data[2] = argument1
 cmd_data[3] = argument2
 cmd_data[4] = argument3
 cmd_data[5] = argument4

where:
header = 0xssddnn

ss = source byte = 0
dd = destination byte

 = 1 for PCI board
 = 2 for timing board

 = 3 for utility board
 nn = number of words in command (>=2)
 = (header + command + number_of_arguments) >= 2

command = 24 bit 3-character ASCII command
 argument1 = -1 if unused (optional)
 argument2 = -1 if unused (optional)
 argument3 = -1 if unused (optional)
 argument4 = -1 if unused (optional)

Unix & Linux
Cmd_data contains is the above command data structure.

ioctl(pci_fd, ASTROPCI_COMMAND, &cmd_data);

Windows 2000
Cmd_data is the above command data structure and outBuffer contains any returned data or reply.

pci_request = CTL_CODE(ASTROPCI_DEVICE, (0x800 | ASTROPCI_COMMAND),

METHOD_BUFFERED, FILE_ANY_ACCESS);
DeviceIoControl((HANDLE)pci_fd, pci_request, &cmd_data, sizeof(cmd_data),

&outBuffer, sizeof(outBuffer), &bytesReturned, NULL));

The following pages contain the full ascii command list along with all required arguments.

 AEX = Abort Exposure
 CDS = Correlated Double Sampling
 CLK = mnemonic that means clock driver board
 CLR = Clear Array
 CSH = Close Shutter
 DCA = Download Coadder
 HGN = Set High Gain
 IDL = Idle
 LDA = Load Application
 LGN = Set Low Gain
 MH1 = Move NIRIM Filter Wheel 1 Home
 MH2 = Move NIRIM Filter Wheel 2 Home
 MM1 = Move NIRIM Filter Wheel 1
 MM2 = Move NIRIM Filter Wheel 2
 MPP = Multi-Pinned Phase Mode
 OSH = Open Shutter
 PEX = Pause Exposure

 POF = Power Off
 PON = Power On
 RCC = Read Controller Configuration
 RDI = Read Image
 RDM = Read Memory
 RET = Read Elapsed Time
 REX = Resume Exposure
 SBN = Set Bias Number
 SBV = Set Bias Voltage
 SET = Set Exposure Time
 SEX = Start Exposure
 SFS = Send Fowler Sample
 SGN = Set Gain
 SMX = Select Multiplexer
 SNC = Set Number of Coadds
 SOS = Select Output Source
 SPT = Set Pass Through Mode
 SRM = Set Readout Mode - either CDS or single
 SSP = Set Subarray Positions
 SSS = Set Subarray Sizes
 STP = Stop Idle
 SUR = Set Up The Ramp Mode
 TDL = Test Data Link
 VID = mnemonic that means video board

WRM = Write Memory
 FPB = Frames Per Buffer

ASCII
Command Header Argument1 Argument2 Argument3 Argument4 Argument5 Reply

‘AEX’ (board_id << 8) | 2 -1 -1 -1 -1 -1 DON
‘CDS’ (TIM_ID << 8) | 3 mode -1 -1 -1 -1 DON
‘CLR’ (TIM_ID << 8) | 2 -1 -1 -1 -1 -1 DON
‘CSH’ (board_id << 8) | 2 -1 -1 -1 -1 -1 DON
‘DCA’ (TIM_ID << 8) | 2 -1 -1 -1 -1 -1 DON
‘HGN’ (TIM_ID << 8) | 4 gain speed -1 -1 -1 DON
‘IDL’ (TIM_ID << 8) | 2 -1 -1 -1 -1 -1 DON

‘LDA’ (TIM_ID << 8) | 3 application
number -1 -1 -1 -1 DON

‘LGN’ (TIM_ID << 8) | 4 gain speed -1 -1 -1 DON
‘MH1’ (UTIL_ID << 8) | 2 -1 -1 -1 -1 -1 DON
‘MH2’ (UTIL_ID << 8) | 2 -1 -1 -1 -1 -1 DON
‘MM1’ (UTIL_ID << 8) | 3 number of steps -1 -1 -1 -1 DON
‘MM2’ (UTIL_ID << 8) | 3 number of steps -1 -1 -1 -1 DON
‘MPP’ (TIM_ID << 8) | 3 mpp_mode -1 -1 -1 -1 DON
‘OSH’ (board_id << 8) | 2 -1 -1 -1 -1 -1 DON
‘PEX’ (board_id << 8) | 2 -1 -1 -1 -1 -1 DON
‘POF’ (board_id << 8) | 2 -1 -1 -1 -1 -1 DON
‘PON’ (board_id << 8) | 2 -1 -1 -1 -1 -1 DON
‘RCC’ (TIM_ID << 8) | 2 -1 -1 -1 -1 -1 config word
‘RDI’ (board_id << 8) | 2 -1 -1 -1 -1 -1 DON
‘RDM’ (board_id << 8) | 3 type | address -1 -1 -1 -1 data
‘RET’ (board_id << 8) | 2 -1 -1 -1 -1 -1 elapsed time
‘REX’ (board_id << 8) | 2 -1 -1 -1 -1 -1 DON
‘SBN’ (TIM_ID << 8) | 6 board ID dac number 0x00564944 voltage -1 DON
‘SBV’ (TIM_ID << 8) | 2 -1 -1 -1 -1 -1 DON
‘SET’ (TIM_ID << 8) | 3 exposure time -1 -1 -1 -1 DON
‘SEX’ (board_id << 8) | 2 -1 -1 -1 -1 -1 DON

‘SFS’ (TIM_ID << 8) | 3 number of
samples -1 -1 -1 -1 DON

‘SGN’ (TIM_ID << 8) | 4 gain speed -1 -1 -1 DON

‘SMX’ (TIM_ID << 8) | 5 clock driver
input

clock select 1
position

clock select 2
position -1 -1 DON

‘SNC’ (TIM_ID << 8) | 3 Number of
coadds -1 -1 -1 -1 DON

‘SOS’ (TIM_ID << 8) | 3 amplifier -1 -1 -1 -1 DON

‘SPT’ (TIM_ID << 8) | 3 pass through
mode -1 -1 -1 -1 DON

‘SRM’ (TIM_ID << 8) | 3 array reset
mode -1 -1 -1 -1 DON

‘SSP’ (TIM_ID << 8) | 5 box Y offset box X offset bias offset -1 -1 DON
‘SSS’ (TIM_ID << 8) | 5 bias width box width box height -1 -1 DON
‘STP’ (TIM_ID << 8) | 2 -1 -1 -1 -1 -1 DON

‘SUR’ (TIM_ID << 8) | 3 number of up
the ramps -1 -1 -1 -1 DON

‘TDL’ (board_id << 8) | 3 data -1 -1 -1 -1 data
‘WRM’ (board_id << 8) | 4 type | address data -1 -1 -1 DON
‘FPB’ (TIM_ID << 8) | 3 Number of FPB -1 -1 -1 -1 DON

TABLE KEY:

Parameter Values
address Any relevant address.
amplifier May be one of the following:

A (0x5F5F41) Upper left amp
B (0x5F5F42) Upper right amp
C (0x5F5F43) Lower left amp
D (0x5F5F44) Lower right amp
AB (0x5F4142) Top two amps
CD (0x5F4344) Bottom two amps
ALL (0x414C4C) Quad readout
L (0x5F5F4C) Lower left amp
R (0x5F5F52) Lower right amp
LR (0x5F4C52) Split serial readout

application number Any valid application number in the range: 0 - 3
array reset mode May be either: GLOBAL_RESET (0) or ROWBYROW_RESET (1)
bias offset The number of (column) pixels to the left edge of the desired bias region.
bias width Width of the desired bias region (in pixels).
board_id May be one of the following:

TIM_ID (0x2) Timing board
UTIL_ID (0x3) Utility board

box height Height of the desired subarray region (in pixels).
box width Width of the desired subarray region (in pixels).
box X offset Number of (column) pixels to the lower left corner of the desired subarray region.
box Y offset Number of (row) pixels to the lower left corner of the desired subarray region.
clock select 1 position
clock select 2 position
dac_number Must be 1 for channel A, and 3 for channel B.
data Any relevant value.
gain Must be one of the following: 1, 2, 5, 10
mode May be either: SINGLE_READOUT (0) or DOUBLE_CORR_READOUT (1)
mpp_mode May be either: ON (1) or OFF (0)
number of coadds Must be in the range: 0 < NC < 65536
number of samples Must be in the range: 0 < N < 65536
number of steps Depends on which filter is selected.
number of up the ramps Must be in the range: 2 < N < 65536
pass through mode Must be either: PASS_THROUGH (1) or NO_PASS_THROUGH (0)
speed Must be either: SLOW (0) or FAST (1)
type Memory type. May be one of the following:

P (0x100000) Program
X (0x200000)
Y (0x400000)
R (0x800000) ROM

board ID Must be in the range: 1<= N <= 16
voltage 24-bit voltage. Must be in the range: 0<= N <= 4095
config word Controller configuration parameter word. Specifies what controller option are available. See section VII.
Number of FPB The number of frames-per-buffer that will fit into the kernel image buffer. Used for co-addition.

XI. THE VOODOO C LIBRARY
 Currently, Java offers no support for low level device driver system calls. To solve this problem,
Voodoo has a C library that contains functions for saving image data, manipulating image data,
displaying image data, mapping image buffers, PTC statistics, and device driver communications. The
library files are accessed by Voodoo through the Java Native Interface (JNI). There are three separate
libraries, one for unix, one for linux, and one for win2k. The libraries can be found in
xx/Voodoo/Clib/unix, xx/Voodoo/Clib/linux, and xx/Voodoo/Clib/win2k, respectively. The function calls
are the same for all three platforms, only the contents are different. The individual libraries are discussed
here.

 Libcdllibc.so

This is a unix/linux only library. This library supports the use of the iraf client display
library to automatically display images in SAOImage, DS9, and Ximtool. Requires iraf
to be installed.

 Copen_cdl() Opens a connection to the client display library.
 Cclose_cdl() Closes a connection to the client display library.

 Libpcilibc.so, pcilibc.dll

 The PCI device driver library. This library contains functions to communcate with
 the PCI board.

 Copen() Opens a connection to the device driver.
 Cclose() Closes the connection to the device driver.
 Cioctl() Sends an ioctl() command to the device driver.

 Libpcimemc.so, pcimemc.dll

The memory library. This library contains functions to communcate with the PCI board.

 Cmap_memory() Maps the device driver image buffer to Voodoo.
 Cunmap_memory() Unmaps the device driver image buffer from Voodoo.
 Cdata_check() Performs a data check on synthetic images.
 Cswap_memory() Byte swaps the spedified memory location, the PCI
 board and SUN have different endians.
 Cget_memory_word() Returns the word located at the specified index.
 Cprint_memory() Prints the contents of the memory buffer.
 Cfill_memory() Fills the image buffer with test values.

 Libdisplibc.so, displibc.dll

 The display library. This library contains functions to display an image on
 saoimage or ximtool. All functions are stubs in win2k.

 Cdisplay() Displays an image using SAOimage or Ximtool (whichever is
 open). Note: this function contains Copen_display() and
 Cclose_display(), so do not use both.
 Copen_display() Opens a connection to saoimage or ximtool. Not used.

 Cclose_display() Closes a connection to saoimage or ximtool. Not used.
 Libcdl.a The Solaris CDL functions library.
 Linux_libcdl.a The Linux CDL functions library.

 Libfitslibc.so, fitslibc.dll

 The FITS library. This library contains functions to write image data to a FITS
 file.

 Cwrite_fits_data() Writes an image to a FITS file.
 CcreateFitsFile() Creates an open-ended FITS file. For use by continuous

readout modes.
 CwriteToFitsFile() Write data to an open-ended FITS file. For use by continuous

readout modes.
 CcloseFitsFile() Closes an open-ended FITS file. For use by continuous

readout modes.

 Libsetupcmdlibc.so, setupcmdlib.dll

 The setup library. This library contains functions to perform any necessary array
 setup features.

 Cdeinterlace() Deinterlaces the array image according to the specified
 selection, which may be one of: 1) serial split, 2) parallel split,

3) CCD quad split, or 4) IR quad split.

 Libptclibc.so, ptclibc.dll

This library contains functions to calculate the statistics for the Photon Transfer Curve
utility.

 CdarkStats() Calculates the dark image statistics.
 CflatStats() Calculates the flat field image statistics.

 Libverlibc.so, verlibc.dll

The version library. This library contains a function to obtain the current date and time
used for the “about” dialog boxes.

 Cdate() Returns the current date and time.

 Libcrlibc.so, crlibc.dll

The continuous readout library. Contains functions that support the continuous readout
modes of Voodoo.

 CzeroBuffer() Clears the specified buffer by filling it with 0’s.
 Cadd() Adds two 16-bit images together and saves them in a single 32-bit
 image.

XII. CONTROLLER CONFIGURATION PARAMETERS
The timing board DSP code on every controller contains a 24-bit word known as the Controller

Configuration. The bits of this word determine what hardware options are available. These options are
ONLY available after a timing board file or application has been downloaded on the controller.

Voodoo reads the controller configuration word by sending an RCC command to the timing
board at the end of a controller setup sequence. A tabbed window is then created based on the word bits.
Each tab pane corresponds to one of the available hardware options and allows parameters to be
modified. For the parameters to be sent to the timing board, users must click “Apply Above” for each
parameters tab they wish to modify. This prevents unintentional modification of values that may
potentially cause harm to the system.

NOTE: If no configuration word exists, the default values are used by Voodoo, which are
NONLINEAR TEMPERATURE CONVERSION, TIMING BOARD REV4B, UTILITY BOARD
REV3, and SHUTTER available.
The DSP file TIMHDR.ASM contains the bit specification for the controller configuration and is:

; The bit is set (=1) if the capability is supported by the controller
BIT #'s FUNCTION
2,1,0 Video Processor
 000 CCD Rev. 3
 001 CCD Gen I
 010 IR Rev. 4
 011 IR Coadder

4,3 Timing Board
 00 Rev. 4, Gen II
 01 Gen I

6,5 Utility Board
 00 No utility board
 01 Utility Rev. 3

7 Shutter
 0 No shutter support
 1 Yes shutter support

9,8 Temperature readout
 00 No temperature readout
 01 Polynomial Diode calibration
 10 Linear sensor calibration

10 Subarray readout
 0 Not supported
 1 Yes supported

11 Binning
 0 Not supported
 1 Yes supported

12 Split-Serial readout
 0 Not supported
 1 Yes supported

13 Split-Parallel readout
 0 Not supported
 1 Yes supported

14 MPP = Inverted parallel clocks
 0 Not supported
 1 Yes supported

16,15 Clock Driver Board
 00 Rev. 3
 11 No clock driver board (Gen I)

19,18,17 Special implementations
 000 Somewhere else
 001 Mount Laguna Observatory
 010 NGST Aladdin
 xxx Other
The timing board DSP file contains default values for all available hardware configurations. Voodoo
allows users to modify these default values.

• IMPORTANT: Modified values are not permanently saved on the timing board EEPROM and
will need to be applied every time one of the following occurs:

� Controller power is cycled.
� The controller setup is applied.

• To expedite this process, Voodoo allows users to save all parameters to a file, which can later be

reloaded. For this purpose there are “Save” and “Load” buttons on the “Parameters Window”.
Once a saved parameters file is loaded the user must go through each configuration tab pane and
click “Apply Above” for those parameters to be loaded into the controller. The parameters are
NEVER automatically loaded. Again, this is to prevent unintentional harm.

• It is important to note that the parameters only directly affect Voodoo in two minor ways, which
are:

� The deinterlace option on Voodoo’s Main Window may be changed. For

example, selecting quad readout will automatically cause the deinterlace option to
select quad deinterlacing.

� The image dimensions in the Setup Window may be changed by some

parameters. Binning, for example, would do this.

Example 1: Utility Board Exists

The controller returned 0x1A0 as the controller configuration. The utility board support is found by
masking 0x1A0 with 0x060. A utility board is supported if: 0x1A0 & 0x060 = 0x020. And in this case it
does.

Example 2:

The controller has returned 0x1420, which will cause Voodoo to create the tabbed parameter panes for a
Clock Driver (0x0), Video Processor Rev. 3B (0x0), Timing Board Rev. 4B (0x0), Utility Board Rev. 3
(0x20), Split Serial Readout options (0x1000), and Subarray is supported (0x400). 0x20 | 0x1000 |
0x400 = 0x1420.

The following sections describe the sequence of commands to set any of the above controller
configuration paramters. All commands are sent via the device driver ioctl()/DeviceIoControl() function.
See the command description section for details about command arguments.

BINNING

Write (WRM) the number of column pixels to bin to Y:5 on the timing board and the number of
row pixels to bin to Y:6.

 P = 0x100000; // Bit 20
 X = 0x200000; // Bit 21
 Y = 0x400000; // Bit 22
 R = 0x800000; // Bit 23

// Column pixels to bin.
cmd_data[0] = 0x000203

 cmd_data[1] = WRM
 cmd_data[2] = 0x400000 | 5
 cmd_data[3] = number of columns to bin
 cmd_data[4] = -1
 cmd_data[5] = -1

ioctl (pci_fd, ASTROPCI_COMMAND, &data);

// Row pixels to bin.
cmd_data[0] = 0x000203

 cmd_data[1] = WRM
 cmd_data[2] = 0x400000 | 6
 cmd_data[3] = number of rows to bin
 cmd_data[4] = -1
 cmd_data[5] = -1

ioctl (pci_fd, ASTROPCI_COMMAND, &data);

CLOCK DRIVER

If (doMux) then

Send SMX command with clock_driver_input, clock_select_1_positon, and
clock_select_2_positon arguments to the timing board.
cmd_data[0] = 0x000205

 cmd_data[1] = SMX
 cmd_data[2] = clock driver input
 cmd_data[3] = clock select 1 position
 cmd_data[4] = clock select 2 position
 cmd_data[5] = -1

ioctl (pci_fd, ASTROPCI_COMMAND, &data);

 If (doClockVoltages) then {

 For (all available voltages) {

 Send SBN command with high voltage to timing board.
cmd_data[0] = 0x000203

 cmd_data[1] = SBN
 cmd_data[2] = high voltage value
 cmd_data[3] = -1
 cmd_data[4] = -1
 cmd_data[5] = -1

ioctl (pci_fd, ASTROPCI_COMMAND, &data);

 Send SBN command with low voltage to timing board.
cmd_data[0] = 0x000203

 cmd_data[1] = SBN
 cmd_data[2] = low voltage value
 cmd_data[3] = -1
 cmd_data[4] = -1
 cmd_data[5] = -1

ioctl (pci_fd, ASTROPCI_COMMAND, &data);

 }

 }

COADDER

If (download coadder) then

Send DCA to the timing board .
cmd_data[0] = 0x000202

 cmd_data[1] = DCA
 cmd_data[2] = -1
 cmd_data[3] = -1
 cmd_data[4] = -1
 cmd_data[5] = -1

ioctl (pci_fd, ASTROPCI_COMMAND, &data);

 If (set number of coadds) then

Send the number of coadds using SNC to the timing board.
cmd_data[0] = 0x000203

 cmd_data[1] = SNC
 cmd_data[2] = number of coadds
 cmd_data[3] = -1
 cmd_data[4] = -1
 cmd_data[5] = -1

ioctl (pci_fd, ASTROPCI_COMMAND, &data);

GAIN

 Send the gain and speed using SGN to the timing board.
cmd_data[0] = 0x000204

 cmd_data[1] = SGN
 cmd_data[2] = gain
 cmd_data[3] = speed
 cmd_data[4] = -1
 cmd_data[5] = -1

ioctl (pci_fd, ASTROPCI_COMMAND, &data);

GAIN (GEN I)

 If (setting high gain) then

Send the gain and speed using HGN to the timing board.
cmd_data[0] = 0x000204

 cmd_data[1] = HGN
 cmd_data[2] = gain
 cmd_data[3] = speed
 cmd_data[4] = -1
 cmd_data[5] = -1

ioctl (pci_fd, ASTROPCI_COMMAND, &data);

 Else if (setting low gain) then

 Send the gain and speed using LGN to the timing board.
cmd_data[0] = 0x000204

 cmd_data[1] = LGN
 cmd_data[2] = gain
 cmd_data[3] = speed
 cmd_data[4] = -1
 cmd_data[5] = -1

ioctl (pci_fd, ASTROPCI_COMMAND, &data);

MPP

 If (doMPP) then

 Send 1 using MPP command to timing board.
cmd_data[0] = 0x000203

 cmd_data[1] = MPP
 cmd_data[2] = 1
 cmd_data[3] = -1
 cmd_data[4] = -1
 cmd_data[5] = -1

ioctl (pci_fd, ASTROPCI_COMMAND, &data);

 Else

 Send 0 using MPP command to timing board.
cmd_data[0] = 0x000203

 cmd_data[1] = MPP
 cmd_data[2] = 0
 cmd_data[3] = -1
 cmd_data[4] = -1
 cmd_data[5] = -1

ioctl (pci_fd, ASTROPCI_COMMAND, &data);

NGST

 If (number of up the ramps >= 2) then

 Send DCA command to timing board.
cmd_data[0] = 0x000202

 cmd_data[1] = DCA
 cmd_data[2] = -1

 cmd_data[3] = -1
 cmd_data[4] = -1
 cmd_data[5] = -1

ioctl (pci_fd, ASTROPCI_COMMAND, &data);

 Send the array reset mode using SRM to the timing board.
cmd_data[0] = 0x000203

 cmd_data[1] = SRM
 cmd_data[2] = array reset mode
 cmd_data[3] = -1
 cmd_data[4] = -1
 cmd_data[5] = -1

ioctl (pci_fd, ASTROPCI_COMMAND, &data);

 Send the number of samples using SFS to the timing board.
cmd_data[0] = 0x000203

 cmd_data[1] = SFS
 cmd_data[2] = number of fowler samples
 cmd_data[3] = -1
 cmd_data[4] = -1
 cmd_data[5] = -1

ioctl (pci_fd, ASTROPCI_COMMAND, &data);

 Send the readout mode using CDS to the timing board.
cmd_data[0] = 0x000203

 cmd_data[1] = CDS
 cmd_data[2] = readout mode
 cmd_data[3] = -1
 cmd_data[4] = -1
 cmd_data[5] = -1

ioctl (pci_fd, ASTROPCI_COMMAND, &data);

 Send the pass through mode using SPT to the timing board.
cmd_data[0] = 0x000203

 cmd_data[1] = SPT
 cmd_data[2] = pass through mode
 cmd_data[3] = -1
 cmd_data[4] = -1
 cmd_data[5] = -1

ioctl (pci_fd, ASTROPCI_COMMAND, &data);

 Send the number of coadds using SNC to the timing board.
cmd_data[0] = 0x000203

 cmd_data[1] = SNC
 cmd_data[2] = number of coadds
 cmd_data[3] = -1
 cmd_data[4] = -1
 cmd_data[5] = -1

ioctl (pci_fd, ASTROPCI_COMMAND, &data);

 Send the number of up the ramps using SUR to the timing board.
cmd_data[0] = 0x000203

 cmd_data[1] = SUR
 cmd_data[2] = number of up-the-ramps
 cmd_data[3] = -1
 cmd_data[4] = -1
 cmd_data[5] = -1

ioctl (pci_fd, ASTROPCI_COMMAND, &data);

NIRIM

 If (move filter wheel 1) then {

 If (move to COLD PLATE) then

 Send MH1 command to utility board.
cmd_data[0] = 0x000302

 cmd_data[1] = MH1
 cmd_data[2] = -1
 cmd_data[3] = -1
 cmd_data[4] = -1
 cmd_data[5] = -1

ioctl (pci_fd, ASTROPCI_COMMAND, &data);

 Else if (new position < last position) then

 Send MH1 command to utility board.
cmd_data[0] = 0x000302

 cmd_data[1] = MH1
 cmd_data[2] = -1
 cmd_data[3] = -1
 cmd_data[4] = -1
 cmd_data[5] = -1

ioctl (pci_fd, ASTROPCI_COMMAND, &data);

 Send number of motor steps using MM1 command to utility board.
cmd_data[0] = 0x000303

 cmd_data[1] = MM1
 cmd_data[2] = number of motor steps
 cmd_data[3] = -1
 cmd_data[4] = -1
 cmd_data[5] = -1

ioctl (pci_fd, ASTROPCI_COMMAND, &data);

 Else if (new position > last position) then

 Send number of motor steps using MM1 command to utility board.
cmd_data[0] = 0x000302

 cmd_data[1] = MM1
 cmd_data[2] = number of motor steps
 cmd_data[3] = -1
 cmd_data[4] = -1
 cmd_data[5] = -1

ioctl (pci_fd, ASTROPCI_COMMAND, &data);

 If (filter wheel 2 needs to move) then

 Send number of motor steps using MM2 command to utility board.
cmd_data[0] = 0x000302

 cmd_data[1] = MM2
 cmd_data[2] = number of motor steps
 cmd_data[3] = -1
 cmd_data[4] = -1
 cmd_data[5] = -1

ioctl (pci_fd, ASTROPCI_COMMAND, &data);

 }

 Else if (move filter wheel 2) then {

 If (new position < last position) then

 Send MH2 command to utility board.
cmd_data[0] = 0x000302

 cmd_data[1] = MH2
 cmd_data[2] = -1
 cmd_data[3] = -1
 cmd_data[4] = -1
 cmd_data[5] = -1

ioctl (pci_fd, ASTROPCI_COMMAND, &data);

 Send number of motor steps using MM2 command to utility board.
cmd_data[0] = 0x000302

 cmd_data[1] = MM2
 cmd_data[2] = number of motor steps
 cmd_data[3] = -1
 cmd_data[4] = -1
 cmd_data[5] = -1

ioctl (pci_fd, ASTROPCI_COMMAND, &data);

 Else if (new position > last position) then

 Send number of motor steps using MM2 command to utility board.
cmd_data[0] = 0x000302

 cmd_data[1] = MM2
 cmd_data[2] = number of motor steps
 cmd_data[3] = -1
 cmd_data[4] = -1
 cmd_data[5] = -1

ioctl (pci_fd, ASTROPCI_COMMAND, &data);

 If (filter wheel 1 needs to move) then

 Send number of motor steps using MM1 command to utility board.
cmd_data[0] = 0x000302

 cmd_data[1] = MM1
 cmd_data[2] = number of motor steps
 cmd_data[3] = -1
 cmd_data[4] = -1
 cmd_data[5] = -1

ioctl (pci_fd, ASTROPCI_COMMAND, &data);

 }

READOUT

 Send the amp using SOS command to timing board.
cmd_data[0] = 0x000203

 cmd_data[1] = SOS
 cmd_data[2] = amp
 cmd_data[3] = -1
 cmd_data[4] = -1
 cmd_data[5] = -1

ioctl (pci_fd, ASTROPCI_COMMAND, &data);

TEMPERATURE

 Write the adu temperature value to Y:1C using WRM to the utility board.
cmd_data[0] = 0x000303

 cmd_data[1] = WRM
 cmd_data[2] = (Y | 1C)
 cmd_data[3] = adu temperature value
 cmd_data[4] = -1
 cmd_data[5] = -1

ioctl (pci_fd, ASTROPCI_COMMAND, &data);

VIDEO OFFSETS

 For (each video offset board id) {

Using the SBN command, send the video channel A offset[video offset board id] to the
timing board.
cmd_data[0] = 0x000203

 cmd_data[1] = SBN
 cmd_data[2] = channel A video offset board id
 cmd_data[3] = -1
 cmd_data[4] = -1
 cmd_data[5] = -1

ioctl (pci_fd, ASTROPCI_COMMAND, &data);

Using the SBN command, send the video channel B offset[video offset board id] to the
timing board.
cmd_data[0] = 0x000203

 cmd_data[1] = SBN
 cmd_data[2] = channel B video offset board id
 cmd_data[3] = -1
 cmd_data[4] = -1
 cmd_data[5] = -1

ioctl (pci_fd, ASTROPCI_COMMAND, &data);

 }

XIII. TEMPERATURE CALIBRATION
 The calibration of the temperature depends on which sensor the camera contains. This section
describes how to calculate the temperature for the non-linear CY7 series silicon diodes. The curve is fit
by a polynomial expansion based upon the Chebychev polynomials. This curve has four different fits
based upon the temperature range required. The default values in Voodoo are set for the range of
temperatures from 100K to 475K.

Recall that the Chebychev equation has the basic form:

∑
=

=
0

)()(
n

nn xtaxT

where T(x) is the temperature in Kelvins, an is the nth coefficient, tn(x) is the nth Chebychev polynomial,
and x is the dimensionless voltage defined by:

VLVU
VVUVLVx

−
−−−

=
)()(

where VU and VL are the upper and lower voltage limits, respectively. The Chebychev polynomials
were calculated using the recursion relation:

tn+1(x) = 2xtn(x) – tn-1(x)
where t0(x) = 1 and t1(x) = x.

The DSP software determines the ADU count, not the voltage through the diode. It is therefore
necessary to convert from ADUs to volts in order to make use of the above equations. The ADU count
varies linearly with the voltage, so it is only necessary to determine the conversion factor from ADUs to
volts and the ADU offset. The default value used for aduPerVolt is 1366.98 and the value for aduOffset
is 2045. These values were calibrated from the 2048x2048 CCD at Mt. Laguna Observatory.

aduPerVolt
aduOffsetaduVolts −

=

All coefficients and constants can be found and modified in VoodooConstants.java. The maximum
number of coefficients that Voodoo is capable of handling is eleven (0 – 10).

XIIII. DEVICE DRIVER USAGE (UNIX & LINUX)
 The device driver has four main entry points available for interaction with the camera. The four
entry points are: open(), close(), mmap(), munmap(), and ioctl(). To use these functions, the user must
include the system file fcntl.h.

 1. open()

Opens a connection to the requested device. This function must succeed before any further
access to the device may occur. See the open(9E) man pages. Returns 0 for success or -1 for
failure.

 Usage:
 int file descriptor = open(const char *device node, int mode)

 device node

Is one of nodes /dev/astropci0 or /dev/astropci1. These nodes are created during
the driver installation process and corrospond to pci board 1 and 2 (depending on
the number of boards you have).

 mode

Is the constant O_RDWR (Open for reading and writing) supplied by the system
file fcntl.h.

 file descriptor
 Is an integer reference to the opened device.

 2. close()

 Closes a connection to the requested device. Returns 0 for success or -1 for failure.

 Usage:
 close(int file descriptor)

 file descriptor
 Is the integer returned from the open() instruction.

3. mmap()

 Used to map the device driver image buffer to user space.

 Usage:

 mmap(void *addr, size_t len, int prot, int flags,int fildes,off_t off);

 addr
 Set to 0.

 len

The size (in bytes) of the memory to be mapped.

 prot
 The read/write mode. Set to (PROT_READ | PROT_WRITE).

 flags
 Specifies whether or not memory is shared. Set to MAP_SHARED.

 fildes
 The PCI file descriptor returned from the open() call.

 offset
 Set to 0.

4. munmap()

 This function frees the image buffer memory.

 Usage:

 munmap(void * filde);

 fildes
 The file descriptor returned from the mmap() call.

5. ioctl()

 This is the "do all" instruction. Used to pass parameters, set controller states, receive controller
status, and issue controller commands. Returns 0 for success or -1 for failure.

 Usage:
 ioctl(int file descriptor, int command, int *arg)

 file descriptor
 Is the integer returned from the open() function.

 command
 Is one of the commands described below and defined in astropci_ioctl.h.

 arg

Is a variable used to send parameters and receive values associated with the
execution of the specifed command.

 ASTROPCI_GET_HCTR (0x1)
 Get the current value of the PCI DSP Host Control Register.
 ASTROPCI_GET_PROGRESS(0x2)
 Get the current pixel transfer count.
 ASTROPCI_GET_DMA_ADDR (0x3)
 Returns the current start address of the image buffer.
 ASTROPCI_GET_HSTR (0x4)
 Get the current value of the PCI DSP Host Status Register.
 ASTROPCI_HCVR_DATA (0x10)
 Set a data value for the next HCVR command.
 ASTROPCI_GET_HCTR (0x11)
 Set the current value of the PCI DSP Host Control Register.

 ASTROPCI_SET_HCVR (0x12)
 Set the current value of the PCI DSP Host Control Vector Register.
 ASTROPCI_PCI_DOWNLOAD (0x13)
 Set the PCI board into download mode. Used for ROM burning.
 ASTROPCI_PCI_DOWNLOAD_WAIT (0x14)
 Waits for the PCI board to complete the ROM burning process.
 ASTROPCI_COMMAND (0x15)
 Sends the specified command to the specified board.

XV. DEVICE DRIVER USAGE (WINDOWS 2000)
 The device driver has three main entry points available for interaction with the camera. The
three entry points are: CreateFile(), CloseHandle(), and DeviceIoControl(). To use these functions, the
user must include the system file windows.h and winioctl.h.

 1. CreateFile()

Opens a connection to the requested device. This function must succeed before any further
access to the device may occur. This method should be set to overlapped for asynchronous
readout. Returns a handle to the PCI device driver upon success.

 Usage:

HANDLE CreateFile(
 LPCTSTR lpFileName, // pointer to name of the file
 DWORD dwDesiredAccess, // access (read-write) mode
 DWORD dwShareMode, // share mode
 LPSECURITY_ATTRIBUTES lpSecurityAttributes, // pointer to security

attributes
 DWORD dwCreationDisposition, // how to create
 DWORD dwFlagsAndAttributes, // file attributes
 HANDLE hTemplateFile // handle to file with attributes to
 copy

);

Should be set as follows, where deviceName is “\\\\.\\driverName”. The default value for
Voodoo is “\\\.\\ARCPNP1”:

CreateFile(deviceName,

 GENERIC_READ,
 FILE_SHARE_READ | FILE_SHARE_WRITE,
 NULL,
 OPEN_EXISTING,
 FILE_FLAG_OVERLAPPED,
 NULL);

 2. CloseHandle()

 Closes a connection to the requested device. Returns TRUE for success, FALSE otherwise.

 Usage:
 BOOL CloseHandle(
 HANDLE hObject // handle to object to close

);

3. DeviceIoControl()

 This is the "do all" instruction. Used to pass parameters, set controller states, receive controller
status, and issue controller commands. Returns TRUE for success or FALSE for failure. See
astropci_ioctl.h for a complete list of commands.

 Usage:
 BOOL DeviceIoControl(
 HANDLE hDevice, // handle to device of interest
 DWORD dwIoControlCode, // control code of operation to perform
 LPVOID lpInBuffer, // pointer to buffer to supply input data
 DWORD nInBufferSize, // size, in bytes, of input buffer
 LPVOID lpOutBuffer, // pointer to buffer to receive output data

DWORD nOutBufferSize, // size, in bytes, of output buffer
 LPDWORD lpBytesReturned, // pointer to variable to receive byte

 count
 LPOVERLAPPED lpOverlapped // pointer to structure for asynchronous

 operation
);

 ASTROPCI_GET_HCTR (0x801)
 Get the current value of the PCI DSP Host Control Register.
 ASTROPCI_GET_PROGRESS(0x802)
 Get the current pixel transfer count.
 ASTROPCI_GET_DMA_ADDR (0x803)
 Returns the current start address of the image buffer.
 ASTROPCI_GET_HSTR (0x804)
 Get the current value of the PCI DSP Host Status Register.
 ASTROPCI_MEM_MAP (0x805)
 Maps the device driver image buffer to user space.
 ASTROPCI_HCVR_DATA (0x810)
 Set a data value for the next HCVR command.
 ASTROPCI_GET_HCTR (0x811)
 Set the current value of the PCI DSP Host Control Register.
 ASTROPCI_SET_HCVR (0x812)
 Set the current value of the PCI DSP Host Control Vector Register.
 ASTROPCI_PCI_DOWNLOAD (0x813)
 Set the PCI board into download mode. Used for ROM burning.
 ASTROPCI_PCI_DOWNLOAD_WAIT (0x814)

 Waits for the PCI board to complete the ROM burning process.
 ASTROPCI_COMMAND (0x815)
 Sends the specified command to the specified board.
 ASTROPCI_MEM_UNMAP (0x816)
 Unmaps the image buffer from user space.

XVI. APPENDIX A

1. Controller Setup Sequence Pseudo Code

// Check for PCI download.
If (do PCI download) then
{
 If (PCI filename does not exist) then
 Print error message and continue.
 Else

Call function to perform PCI file download.
}

If (reply not equal to ‘DON’ or if TIMEOUT) then
 Print error message and continue.

If (do reset controller) then
{

Reset the controller using the ioctl() command ASTROPCI_SET_HCVR with an
argument value of 0x87 (RESET_CONTROLLER).

If (reply not equal to ‘SYR’ or if TIMEOUT) then
 Print error message and continue.

}

If (do hardware test) then
{
 If (do PCI hardware test) then
 {

Calculate data increment: data_incr = MAX_TEST_VALUE/NUM_OF_PCI_TESTS

 Loop over the NUM_OF_PCI_TESTS
 {

Use the ioctl() to send TDL command.

If (reply not equal to sent data value or if TIMEOUT) then
 Print error message and continue.

Increment data value: data = data + data_incr.

 }
 }

 If (do timing hardware test) then
 {

Calculate data increment: data_incr = MAX_TEST_VALUE/NUM_OF_TIM_TESTS

 Loop over the NUM_OF_TIM_TESTS
 {

Use the ioctl() to send TDL command.

If (reply not equal to sent data value or if TIMEOUT) then

 Print error message and continue.

Increment data value: data = data + data_incr.

 }
 }

 If (do utility hardware test) then
 {

Calculate data increment: data_incr = MAX_TEST_VALUE/NUM_OF_UTIL_TESTS

 Loop over the NUM_OF_UTIL_TESTS
 {

Use the ioctl() to send TDL command.

If (reply not equal to sent data value or if TIMEOUT) then
 Print error message and continue.

Increment data value: data = data + data_incr.

 }
 }
}

If (do timing file load) then
{
 If (file does not exist) then
 Print error message and continue.
 Else
 {
 Call function to load timing DSP file.

 If (timing file load failed or if TIMEOUT) then
 Print error message and continue.
 }
}

If (do timing application) then
{
 If (application number not between 0 and 3) then
 Print error message and continue.
 Else
 {

Send the STP command to the timing board using ioctl().

Send the LDA command to the timing board using ioctl().

If (reply not equal to ‘DON’ or if TIMEOUT) then
 Print error message and continue.

 }
}

If (do utility file load) then
{
 If (file does not exist) then
 Print error message and continue.
 Else
 {
 Call function to load utility DSP file.

 If (utility file load failed or if TIMEOUT) then
 Print error message and continue.
 }
}

If (do utility application) then
{
 If (application number not between 0 and 3) then
 Print error message and continue.
 Else
 {

Send the LDA command to the timing board using ioctl().

If (reply not equal to ‘DON’ or if TIMEOUT) then
 Print error message and continue.

 }
}

If (do power on) then
{

If (timing equals master) then
Send the PON command to the timing board using ioctl().

 Else if (utility equals master) then
 Send the PON command to the utility board using ioctl().

If (reply not equal to ‘DON’ or if TIMEOUT) then

 Print error message and continue.
}

If (do set dimensions) then
{
 // Set the number of columns.

Write (WRM) the columns to Y:1 on the timing board.

If (reply not equal to ‘DON’ or if TIMEOUT) then
 Print error message and continue.

// Set the number of rows.
Write (WRM) the rows to Y:2 on the timing board.

If (reply not equal to ‘DON’ or if TIMEOUT) then
 Print error message and continue.

Set a variable that lets the exposure function know that the minimum
controller setup has been applied.

}

If (did timing download) then
 Send RCC to timing board to get controller configuration word.

2. Exposure Sequence Pseudo Code

// --
// Set the shutter position.
// Bit 11 of the controller status is set/unset.
// --
If (timing board equals master) then
 Send RDM of X:0 to timing board. Status is returned.
Else if (utility board equals master) then
 Send RDM of X:1 to utility board. Status is returned.

If (open shutter equals true) then

If (timing board equals master) then
Send WRM to X:0 with an argument of (status | (1<<11)) to the timing
board.

 Else if (utility board equals master) then

Send WRM to X:1 with an argument of (status | 1) to the utility board.
Else

If (timing board equals master) then
Send WRM to X:0 with an argument of (status & ~(1<<11)) to the timing
board.

 Else if (utility board equals master) then
Send WRM to X:1 with an argument of (status & 0xFFFFFFFE) to the utility
board.

If (reply not equal to ‘DON’) then
 Print error message and continue.

// --
// Set the exposure time.
// --
if (timing board equals master) then
 Send SET with the exposure time argument to the timing board.

 If (reply not equal to ‘DON’) then
 Print error message and exit.

Else if (utility board equals master) then

Send WRM of Y:18 with the exposure time as the argument to the utility board.

If (reply not equal to ‘DON’) then
 Print error message and return.

// Get the image byte size.
Calculate image byte count from setup info.

// Check for multiple exposures.
If (do multiple exposures) then
 Set number of exposures.
Else
 Set number of exposure to 1.

// Start executing the exposures.
Loop over the number of exposures
{

Display the elapsed time as 0.
Set the current pixel count to 0.
Set the last pixel count to 0.
Set maximum pixel count to rows*columns.

If (delay before starting the exposure) then

sleep for delay*1000 seconds.
Else continue.

// --
// Start the exposure.
// --
Send SEX to whichever board is master.

If (reply not equal to ‘DON’) then

print error message and exit.

// --
// Do the exposure.
//
// NOTES:
// Reading the exposure time and current progress bar address
// require different sleep times (0.5 sec - RET, 25 ms –
// ASTROPCI_GET_PROGRESS). To compensate, the following

 // loop sleeps for 25 ms and the elapsed exposure time is only
// read every 20*25ms = 500ms (0.5 sec).
// --

 while (current pixel count < maximum pixel count) then {
Read current status value using ioctl() command ASTROPCI_GET_HSTR. Then
status = (status & HTF_BITS) >> 3.

// --
// Read elapsed exposure time.
// --
if (status not equal to 0x5 (READOUT) AND

exposure counter is greater or equal to 20 AND
elapsed time is greater or equal to 1 second) then {

 if (timing board equals master) then
 Send RET to timing board. Elapsed time

returned.

 Else if (utility board equals master) then
 Send RDM to Y:17. Elapsed time returned.

 Display the elapsed time.

 Increment exposure counter.
 }

// --
// Readout current byte count.
// --

 else {
Send the ioctl() command ASTROPCI_GET_PROGRESS. The current pixel
count will be returned.

If (current pixel count equals last pixel count) then
 Increment readout timeout.

If (readout timeout is greater than 200) then
 Print timeout message and exit.

 }
 Sleep for 25 milliseconds.

}

If (beep after readout) then

 Ring the system bell.

// Un-swap the image data.
Call Cswap_memory() function in the libpcimemc.so library.

If (the image needs to be de-interlaced) then

Call Cdeinterlace() function in the libsetupcmdlibc.so library.

 If (the image needs to be displayed) then
 Call Cdisplay() function in the libdisplibc.so library.

 If (cannot display) then
 Print error message and continue.

 If (the image needs to be saved) then {
 If (auto-increment the filename equals true) then
 Increment the filename.

 Write the FITS file.
 }

If (image is synthetic and want to check data) then
 Call Cdata_check() function in the libpcimemc.so library.
}

XVII. C APPLICATION INTERFACE
 We offer a C API for users who wish to interface their own application or scripts to the device
driver and controller. The API is written in C and contains the basic device driver function calls, which
are the building blocks for all controller communications. There are only 5 basic function calls, one to
read the PCI DSP command register (HCTR), one to write the PCI DSP command register, one to read
the PCI DSP status register (HSTR), one to write a vector command to the PCI board, and one to write
all regular ASCII commands. The API also contains functions for reading array temperature,
deinterlacing images, storing FITS files, and loading PCI, timing, and utility DSP .lod files.

The API is bundled into the following:

• UNIX – static archive library (.a), dynamic library (.so)
• LINUX – static archive library (.a), dynamic library (.so)
• Windows 2000 – static library (.lib), Dynamic Linked Library (.dll)

The C API is supplied with a sample application called “apiTest”. It is fully function text based
program that exercises all of the API.

===
MAIN MENU
===
1. Apply Controller Setup
2. Apply Controller Parameters
3. Expose
4. Let It Rip (Do Options 1, 2, 3 With Defaults)
5. Exit

Enter Option: |

XVIII. REVISION HISTORY

DATE AUTHOR CHANGE
11/22/1999 Scott Streit Initial
01/11/2000 Scott Streit Updated example, original had bugs.
02/08/2000 Scott Streit Added Section II subsections 4 and 5, added Section VI,

and misc. minor changes.
03/02/2000 Scott Streit Added bit 0 info for HSTR, added info for downloading

timing, utility, and PCI files under section IV. Updated reply
buffer info in section II.

06/27/2000 Scott Streit Converted document to MS Word.
07/25/2000 Scott Streit Added reply values to ioctl() and vector command lists.

Updated board destination section.
08/16/2000 Scott Streit Merged driver and voodoo docs into one programmers

manual.
09/26/2001 Scott Streit Updated for version 1.7
05/08/2002 Scott Streit Updated for version 1.7-A
06/24/2002 Scott Streit Added non-linear temperature calibration section.

	I. DESCRIPTION
	II. VOODOO SOURCE DOCUMENTATION
	III. DEVICE DRIVER INSTALLATION
	
	
	
	Solaris Installation
	Linux Installation
	Windows 2000 Installation

	IV. VOODOO INSTALLATION
	
	
	
	Solaris and Linux Installation
	Windows 2000 Installation

	V. APPLICATION STRUCTURE
	VI. IMAGE BUFFER
	VII. CAMERA CONTROL
	
	Exposure Command Sequence

	VIII. PCI BOARD - DEVICE DRIVER INTERACTION
	
	1. Configuration Registers

	Configuration Space Header
	
	Control/Status Registers
	Host Interface Control Register (HCTR)
	Host Interface Status Register (HSTR)

	VIIII. VECTOR COMMANDS
	X. NORMAL (ASCII) COMMANDS
	XI. THE VOODOO C LIBRARY
	
	
	
	Libcdllibc.so
	Libpcilibc.so, pcilibc.dll
	Libpcimemc.so, pcimemc.dll
	Libdisplibc.so, displibc.dll
	Libfitslibc.so, fitslibc.dll
	Libsetupcmdlibc.so, setupcmdlib.dll
	Libptclibc.so, ptclibc.dll
	Libverlibc.so, verlibc.dll
	Libcrlibc.so, crlibc.dll

	XII. CONTROLLER CONFIGURATION PARAMETERS
	�
	XIII. TEMPERATURE CALIBRATION
	XIIII. DEVICE DRIVER USAGE (UNIX & LINUX)
	
	1. open()
	2. close()
	3. mmap()
	4. munmap()
	This function frees the image buffer memory.
	5. ioctl()

	XV. DEVICE DRIVER USAGE (WINDOWS 2000)
	
	1. CreateFile()
	2. CloseHandle()
	3. DeviceIoControl()

	XVI. APPENDIX A
	
	1. Controller Setup Sequence Pseudo Code
	2. Exposure Sequence Pseudo Code

	XVII. C APPLICATION INTERFACE
	XVIII. REVISION HISTORY

