

Model 5312B
4 Axis Quadrature Encoder - PC

Software Guide

ACS-Tech80 Part Number 700020

Document version no. 1.30

Information deemed to be correct at time of publishing. ACS-Tech80, Inc. reserves the right to change specifications without notice.
ACS-Tech80, Inc. is not responsible for incidental, consequential, or special damages of any kind in connection with this document.

�

Model 5312B Software Guide - Document version no. 1.30 2

Intentionally Left Blank

�

Model 5312B Software Guide - Document version no. 1.30 3

Document version no 1.30 (May 2001)

Part number: 700020

Microsoft Windows is a registered trademark of Microsoft Corporation.

Changes are periodically made to the information contained in this manual. These changes are
published in "software/hardware release notes," and will be incorporated into new editions. This
document cannot be reproduced in any form, without permission in writing from ACS-Tech80
Inc. All Rights Reserved.

Copyright © 2000, 2001 ACS-Tech80.

ACS-Tech80 Inc. reserves the right to change specifications without notice.

Internet: http://www.acs-tech80.com/
E-mail: info@acs-tech80.com
 support@acs-tech80.com

ACS-Tech80 Inc. ACS-Tech80 Ltd.
7351 Kirkwood Lane North Ramat Gabriel Industrial Park,
Suite 130 POB 5668
Maple Grove, MN, 55427, USA Migdal Ha'Emek, 10500, Israel
Tel: +1.763.493.4080 Tel: +972.6.6546440
Fax: +1.763.493.4089 Fax: +972.6.6546443

Warning

 Dangerous voltages are present in this equipment!

Contact with live parts could cause serious injury or death!
Refer connection, installation, maintenance, adjustment, servicing and

operation to qualified personnel.

http://www.acs-tech80.com/
mailto:info@acs-tech80.com
mailto:support@acs-tech80.com

�

Model 5312B Software Guide - Document version no. 1.30 4

Intentionally Left Blank

�

Model 5312B Software Guide - Document version no. 1.30 5

Table of Contents
About this Manual ... 7

Quality Control ... 7
Procedural Conventions .. 7
Notational Conventions... 8

How This Book Is Organized.. 10

1 Programming Overview ... 11
1.1 Installing the Model 5312 Software ... 11
1.2 Compiling and Linking ... 11

1.2.1 Microsoft C or Microsoft QuickC ... 11
1.2.2 Borland or Turbo C/C++ .. 12
1.2.3 Microsoft QuickBASIC.. 12
1.2.4 Borland Turbo Pascal ... 13

1.3 Programming in DOS.. 13
1.4 Programming in Windows... 14

1.4.1 Procedure ... 14

2 Example Programs... 15
2.1 Program In C .. 15
2.2 Program in BASIC.. 17
2.3 Program in Pascal ... 19

3 Interrupt Handling .. 21
3.1 Introduction .. 21

3.1.1 Enabling Interrupts... 21
3.2 Interrupts in C or Pascal .. 21
3.3 Interrupts in BASIC .. 21
3.4 General Notes on Using Interrupts... 22

4 Alphabetical Routine Summary ... 23

5 Driver Routine Descriptions... 25
Notational Conventions... 25
te5312DisabIeIRQ .. 26
te5312EnableIRQ ... 27
te5312IndexAlertOff... 28
te5312lndexAlertOn.. 29
te5312InitBoard.. 30
te5312lnitEncoder... 32
te5312lnitSw... 35
te5312lnterruptHooks ... 36
te5312LoadCntr .. 37
te5312LoadPr ... 38
te5312ReadCntr .. 39
te5312ReadOL.. 40
te5312ReadSts .. 41
te5312WrapAroundAlertOff ... 43
te5312WrapAroundAlertOn.. 44
te5312WriteCmd .. 45

�

Model 5312B Software Guide - Document version no. 1.30 6

6 Demonstration Program ... 48

7 Visual BASIC Demo Program... 50
Overview.. 50
Software Installation ... 50
User’s Guide... 51
Developer’s Guide .. 53

Code Modules... 55

8 LSI Chip Applications Note .. 56
1 Introduction ... 56

1.1 Problem Definition.. 56
1.2 Problem Solution... 56

9 Using the Model 5312 Windows NT Drivers.. 57
Installation.. 57
Normal Installation ... 57
Manual Installation ... 57
Troubleshooting.. 58
Modifying the Registry ... 58
Driver Overview ... 59
NT Functions .. 59
Operations .. 59
Visual Basic Operation ... 59
Visual C++ Operation ... 59
Using Interrupts .. 60
Worker Thread Management... 62
Interrupting Axis Numbers.. 62
DRIVER ROUTINE REFERENCES .. 63
OpenFileLink.. 63
CloseFileLink ... 64
Initlntr .. 65
WaitForInt .. 66
IntRead... 67
DisableIntr.. 68

10 Using the Model 5312 32-bit Windows Drivers ... 69
Installation.. 69
Visual C++ ... 69
DRIVER ROUTINE REFERENCES .. 70
OpenTheDriver... 70
CloseTheDriver .. 71

11 Manual Addendum .. 72
Linker Errors for C++ Users ... 72
“Corrupted or missing file” error... 72

�

Model 5312B Software Guide - Document version no. 1.30 7

About this Manual

Quality Control
ACS-Tech80 manufactures quality and versatile products, and we want our documentation to
reflect that same quality. We take great pains to publish manuals that are informative and well
organized. We also strive to make our documentation easy to understand for the novice as well
as the expert.

If you have comments or suggestions about how to make this (or other) manuals easier to
understand, or if you find an error or an omission, please email us at support@acs-tech80.com,
You will receive a complimentary updated manual.

Procedural Conventions
ACS-Tech80 uses various conventions throughout this and all other manuals. You should
become familiar with these conventions as they are used to draw attention to items of importance
and items that will generally assist you in understanding a particular area.

WARNING

CAUTION

NOTE

When referring to pin numbering, pin 1 is always associated with a square solder pad on the
actual component footprint.

mailto:support@acs-tech80.com

�

Model 5312B Software Guide - Document version no. 1.30 8

Notational Conventions
A forward slash (I) preceding a signal name denotes an active LOW signal. This is a standard
Intel convention.

Caret brackets (<>) denote keystrokes. For instance <Enter> represents carriage—return—
with—line—feed keystroke, and <Esc> represents an escape keystroke.

Driver routine declarations are shown for C and BASIC (where applicable).

Hungarian notation is used for software parameters. In other words, the parameter type is
denoted by a one or two letter small case prefix:

c

s

w

l

dw

character, signed or unsigned

short integer, signed

short integer, unsigned

long integer, signed

long integer, unsigned

For example, wBoardAddr would be an unsigned short integer parameter.

An additional p prefix before the type prefix indicates that the parameter is being passed by
reference instead of by value. (A pointer to the variable is being passed instead of the variable
itself.)

For example, pwErr would be an unsigned short integer parameter passed by reference.

This notation is also used in BASIC although no distinction between signed and unsigned
variables exists.

In BASIC, all parameters also have a type suffix:

$

%

&

character, signed or unsigned

integer, signed or unsigned

long integer, signed or unsigned

Routine names are printed in bold plain font when they appear outside of function declarations,
e.g., te53l2InitSw.

Parameter names are printed in italics when they appear outside of function declarations, e.g.,
sControls.

�

Model 5312B Software Guide - Document version no. 1.30 9

Constants are defined with all caps, e.g., ALL_AXES. Underscores (_) must be replaced by
periods (.) for use with BASIC.

Combinational logic and hexadecimal notation is in C convention in many cases. For example,
the hexadecimal number 7Ch is shown as 0x7C.

C relational operators for OR and AND functions— “| |” and “&&”— are used to minimize the
confusion associated with grammar.

�

Model 5312B Software Guide - Document version no. 1.30 10

How This Book Is Organized

Front Section
A TOC (Table of Contents) lists all the sections, appendices, and attachments in the manual set.
In addition, the TOC lists all figures, tables, and sample code where applicable.

Section 1

Programming Overview
This section offers a general discussion on how to compile and link the M5312 software drivers
with an assortment of compiler resources.

Section 2

Example Programs
This section lists sample programs for typical applications in C, BASIC, and Pascal.

Section 3

Interrupt Handling
This section shows how to set up your program to use the software driver to generate interrupts.

Section 5

Alphabetical Routine Summary
This section lists all the software driver routines in alphabetical order.

Section 6

Driver Routine Descriptions
This appendix is a complete reference for the M5312 software driver routines.

Section 7

Demonstration Program
This appendix familiarizes you with a simple demo program that configures the board and reads
back encoder counts on all 4 axes independently.

�

Model 5312B Software Guide - Document version no. 1.30 11

1 Programming Overview

1.1 Installing the Model 5312 Software
The Model 5312 driver includes the batch file, INSTALL.BAT, to install the software. The
batch file takes one argument—the path where you will install the software. For example, to
install the software on the C drive into a subdirectory called 5312, type on the command line:

install c:\5312

We recommend you use the same path for the installation of all drivers. This puts all include
files, examples, etc., together. This is especially important when using QuickBASIC, where you
will have to combine many libraries into a quick library.

BASIC, C, and Pascal subdirectories will be created in the directory you specify. You may delete
any unneeded subdirectories to save disk space.

1.2 Compiling and Linking
This section shows how to compile a program using the Model 5312 driver with the various
supported compilers. We assume the source file is named DEMO.C for C, DEMO.BAS for
BASIC, and DEMO.PAS for Pascal. The following notational convention is useful.

x is a variable place holder for library size denoting:

s small model,
m medium model,
c compact model,
l large model
h huge model

1.2.1 Microsoft C or Microsoft QuickC
To compile and link on the command line:

cl /Ax /Gs demo.c te5312x.lib (C)
qcl /Ax /Gs demo.c te5312x.lib (QuickC)

For CodeView compatibility, include the /Zi switch.

To use the Model 5312 driver in the QuickC environment, take the following steps:

1.) In the Make menu, select the Set Program List option.

2.) After naming the Make file, select Edit Program List, and enter the names of the source file
(DEMO.C) and the appropriate library (e.g. te5312s.lib for small model).

3.) In the Options ! Make menu, select the Compiler Flags option and set the appropriate
memory model (this model must match the library in the make list). If you use interrupts, turn
stack-checking off.

�

Model 5312B Software Guide - Document version no. 1.30 12

1.2.2 Borland or Turbo C/C++
To compile and link on the command line:

tcc -mx demo.c te5312x.lib (Turbo C)
bcc -mx demo.o te5312x.lib (Borland C)

For Turbo Debugger compatibility, include the -v option. To use the Model 5312 driver in the
Borland environment, take the following steps:

1.) In the Project/Open Project menu, type in the name of the project file you want to create.

2.) In the Project/Add Item menu, enter the names of the source file (DEMO.C) and the
appropriate library (e.g. te5312s.lib for small model).

3.) In the Options/Compiler/Code Generation menu, set the appropriate memory model (this
model must match the library in the Make list).

1.2.3 Microsoft QuickBASIC
If you use compiled BASIC, exclusively, and never program in the QuickBASIC environment,
you can link the library te5312b.lib into your application.

bc demo.bas;
link demo.obj,,,te5312b. lib

To compile and link for CodeView compatibility, type:

bc /Zi demo.bas;
link /CO demo.obj,,,te5312b.lib

If you use the QuickBASIC environment, you first have to run the batch file LB5312.BAT.
This batch file will need modification, depending on which QuickBASIC version you use.
The necessary modifications are explained by the remarks in the batch file itself.

The batch file creates two files—te53l2qb.qlb and te53l2qb.lib. te5312qb.qlb is a
quick library for use in the QuickBASIC environment and te5312qb.lib is the command line
equivalent.

In other words, develop your program with teS3l2qb.qlb and then in the final compilation, link
with te53l2qb.lib.

Then, to use the Model 5312 driver in the QuickBASIC environment, type:

qb demo.bas /lte5312qb.qlb

�

Model 5312B Software Guide - Document version no. 1.30 13

To compile on the command line:

bc demo.bas;
link demo.obj,,,te5312qb.lib

To compile and link for CodeView compatibility:

bc /Zi demo.bas;
link /CO demo.obj,,,te5312qb.lib

The libraries—te5312b.lib and te53l2qb.lib—are similar but not identical. Library, te5312b.lib,
calls two routines not contained in the library itself: MoveDone and InputAlert. These two
routines have to be included in your source code if you need to link te5312b.lib into application
program. The file, INTR5312.BAS, contains stub versions of these routines that you can use as a
guide, or you can compile and link the file itself into the application. Since te5312b.lib has
unresolved references, it can not be converted into a quick library.

On the other hand, te5312qb.lib, is created by the batch file by compiling INTR5312.BAS and
linking the resulting object file with te5312b.lib. It has no unresolved references and can be
converted into the quick library te53l2qb.qlb. A program developed in the QuickBASIC
environment, using te53l2qb.qlb can be compiled on the command line and linked with
te53l2qb.lib without modifying the source code. See the section on using interrupts with BASIC
for more information.

1.2.4 Borland Turbo Pascal
To compile and link on the command line, type:

tpc /$S- demo

To compile for Turbo Debugger compatibility, include the /v option.

To use the Model 5312 driver in the Turbo Pascal environment, type:

turbo demo

The source file must include the line: uses te5312p;.

1.3 Programming in DOS
Reminder: DOS is not reentrant. Hence, if you use interrupts, be sure to turn stack checking off.
To turn off stack checking in Microsoft Cor Quick C, include the /Gs switch (option); in Turbo
Pascal include /$S on the command line or include the line {$S—} in the program source
code. See the section on using interrupts with BASIC for more information.

�

Model 5312B Software Guide - Document version no. 1.30 14

1.4 Programming in Windows
To program in Windows, you need to link the Model 5312 standard libraries to 16-bit dynamic
linking libraries (DLLs). These are files with the extension .dll located in the appropriate
subdirectories in your specified main directory upon installation. (The corresponding files in the
DOS operating system are .lib files.) They enable you to operate in Windows 3.1 programming
environments.

1.4.1 Procedure
Windows enables you to easily link to these DLLs by following these steps.

1. Upon installation, move all DLL files installed in your specified directory into the Windows \
System directory on your hard drive. Though these DLLs may work from your working
directory, they work better from the Windows \ System directory.

2. Include the line #include te5312w.dll in the header file of your program.

3. When your program calls any one of the functions in the DLL, Windows will automatically
link to the DLL in your Windows \ System directory.

Because of the dynamic nature of DLLs, in many ways, linking is easier in Windows than in
DOS. Thus, no further action is necessary.

Note: te5312w.dll contains all functions contained in te5312x.lib except for interrupt-handling
routines. The reason is that interrupts are not recommended in Windows for two reasons, both
related to interrupt latencies. First, on average, interrupt latencies in Windows are seven times
that of DOS. Second, latencies in Windows are much more varied than in DOS. That means that
you may experience latencies in Windows between four and ten times that of DOS latencies. The
unpredictable nature of interrupt latencies in Windows can be fatal to the timing of your system.
Hence we do not include interrupt-handling functions in our DLLs.

�

Model 5312B Software Guide - Document version no. 1.30 15

2 Example Programs

2.1 Program In C

#include “te5312.h”
#include <stdio.h>
#include <conio.h>

#define BOARD 0
#define AXIS_A 0
#define AXIS_B 1
#define GLOBAL –1

// interrupt hook prototypes
static void te5312IndexAlert(short *psAxisNum);
static void te5312WrapAroundAlert(short *psAxisNum);

// interrupt counters
static unsigned short wCarryA, wCarryB;
static unsigned short wIndexA, wlndexB;

void main()
{
 unsigned short wBoardAddr;
 long lCntA, lCntB;
 short sStatA, sStatB;
 short sIRQNum;

 // get the address
 printf(”\nEnter the base address the 5312 is strapped “
 “at in hexadecimal - “);
 scanf(“%x”, &wBoardAddr);

 // get the IRQ number
 do{
 printf(“\nEnter the interrupt request line used (2 to 7) – “);
 scanf(’’%u”, &sIRQNum);
 }while((sIRQNum < 2) || (sIRQNum > 7));

 // initialize the software
 te53l2InitSw();

 // initialize the board (assume the board has at least two axes)
 te5312InitBoard(wBoardAddr, 2);

 // zero the counters
 te5312LoadCntr(GLOBAL, 0L);

 // initialize interrupts
 te5312InterruptHooks(te53l2WrapAroundAlert, te53l2lndexAlert);
 te5312EnableIRQ(BOARD, sIRQNum);
 te5312lndexAlertOn(GLOBAL);
 te5312WrapAroundAlertOn(GLOBAL);

�

Model 5312B Software Guide - Document version no. 1.30 16

 //print column headers
 printf(“\nPress any key to exit\n\n”
 “ Axis A “
 “ Axis B\n “
 “ Index WrapAround “
 “ Index WrapAround\n“
 “ Count Status Interrupts Interrupts “
 “ Count Status Interrupts Interrupts\n”);

 //display counter values and status until key pressed
 while(!kbhit()){
 lCntA = te53l2ReadCntr(AXIS_A); ICntB = te5312ReadCntr (Axis_B);
 sStatA = te53l2HeadSts(AXIS_A); sStatB = te5312ReadSts (Axis_B);
 printf’(”\r%8ld %2X %5u %5u “, lCntA, StatA,
 wIndexA, wCarryA);
 printf(“%8Id %2X %5u %5u”, ICntB, sStatB,
 wIndexB, wCarryB);
 }
 if (!getch())
 (void)getch()
 printf(“\n”);
 // disable interrupts before exiting program
 te5312DisableIRQ();
}
void te5312WrapAroundAlert(short *psAxisNum)
{
 switch(*psAxisNum){
 case AXIS_A: wcarryA++; break;
 case AXIS_B: wcarryB++; break;
 }
}

void te5312IndexAlert(short *psAxisNum)
{
 switch (*psAxisNum){
 caseAXIS_A: wIndexA++; break;
 caseAXIS_B: wIndexB++; break;
 }
}

�

Model 5312B Software Guide - Document version no. 1.30 17

2.2 Program in BASIC

‘$INCLUDE: ‘TE5312.BAS’

CONST BOARD = 0
CONST GLOBAL = -1
CONST AXIS.A = 0
CONST AXIS.B = 1
CONST BOARD.ADDR = &H020A
CONST NUM.AXES = 2
CONST IRQ.NUM = 2

‘Declare Global Variables
COMMON SHARED CarryA%, CarryB%
COMMON SHARED IndexA%, IndexB%

REM initialize the software
version% = te5312InitSw
cls
print “VERSION NUMBER = “; HEX$(version%)

REM initialize the board
x% = te5312InitBoard(BOARD.ADDR, NUM.AXES)

REM zero the counters
x% = te5312LoadCntr(-1, 0)

REM initialize interrupts
x% = te5312EnableIRQ(BOARD, IRQ.NUM)
x% = te5312lndexAlertOn(-1)
x% = te5312WrapAroundAlertOn(-1)
print
print “Press any key to exit”
print

REM display counter values and status until key pressed
do
 locate 5, 1
 CntA& = te5312ReadCntr(AXIS.A)
 CntB& = te5312ReadCntr(AXIS.B)
 StatA% = te5312ReadSts(AXIS.A)
 StatB% = te5312ReadSts(AXIS.B)
 print “Axis A”
 print “ Count = “; CntA&; ” “
 print “ Status = “; HEX$(StatA%) “ “
 print “ Index Interrupts = “; IndexA%
 print “ Wrap-Around Interrupts = “; CarryA%
 print

�

Model 5312B Software Guide - Document version no. 1.30 18

 print “Axis B”
 print “ Count = “; CntB&; “ “
 print “ Status = “; HEX$(StatB%); “ “
 print “ Index Interrupts = ”; IndexB%
 print “ Wrap-Around Interrupts = “: CarryB%
 A$ = INKEY$

loop while LEN(A$) = 0

REM disable interrupts before exciting program
X% = te5312DisableIRQ

REM If using this file in QuickBasic, move the rest of this file
REM to the file INTR5312.BAS and remove the remark notations from
REM the beginning of the following two declaration lines. Then
REM run the batch file QLB5312.BAT:
REM ‘$INCLUDE: ‘TE5312.BAS’
REM DIM SHARED IndexA%, IndexB%, CarryA%; CarryB%

SUB te5312IndexAlert (AxisNum%)
 if (AxisNum% = AXIS.A) then
 IndexA% = IndexA% + 1
 elseif (AxisNum% = AXIS.B) then
 IndexB% = IndexB% + 1
 endif
END SUB

SUB te5312WrapAroundAlert (AxisNum%)
 if (AxisNum% = AXIS.A) then
 CarryA% = CarryA% + 1
 elseif (AxisNum% = AXIS.B) then
 CarryB% = CarryB% + 1
 endif
ENDSUB

�

Model 5312B Software Guide - Document version no. 1.30 19

2.3 Program in Pascal

Program example1;

uses te5312p, crt;

const
 { Define some initial constants }
 ADDR = $20A; { board address }
 NUM_AXES = 2; { number of axes on board }
 IRQ = 3; { IRQ number }
 BOARD =0; { board number }
 GLOBAL = -1; { Global number }
 AXIS_A = 0; { first axis number to be moved }
 AXIS_B = 1; { second axis number to be moved }
 CR = #13; { carriage return }

var
 { interrupt counters }
 wCarryA, wCarryB, wIndexA, wIndexB : word;
 wBoardAddr : word;
 lCntA, lCntB : longint;
 sStatA, sStatB : integer;
 sTemp : integer;

{$S-} { turn stack checking off for interrupts }

procedure te5312WrapAroundAlert (var psAxisNum : integer); far;
begin
 if (psAxisNum = AXIS_A) then wCarryA := wCarryA + 1;
 if (psAxisNum = AXIS_B) then wCarryB := wCarryB + 1;
end;

procedure te5312IndexAlert (var psAxisNum : integer); far;
begin
 if (psAxisNum = AXIS_A) then wIndexA := wIndexA + 1;
 if (psAxisNum = AXIS_B) then wIndexB := wIndexB + 1;
end;

begin
 { initialize the software }
 sTemp := te5312InitSw;

 { initialize the board }
 sTemp := te5312InitBoard(ADDR, NUM_AXES);

 { zero the counters }
 sTemp := te5312LoadCntr(GLOBAL, 0);

�

Model 5312B Software Guide - Document version no. 1.30 20

 { initialize interrupts }
 wIndexA := 0; wIndexB := 0;
 wCarryA := 0; wCarryB := 0;
 InterruptHooks(te5312WrapAroundAlert, te5312IndexAlert);
 sTemp := te5312EnableIRQ(BOARD, IRQ);
 sTemp := te53l2IndexAlertOn(GLOBAL);
 sTemp := te5312WrapAroundAlertOn(GLOBAL);

 { print column headers }
 Writeln(’Press any key to exit’);
 Writeln;
 Write(‘ Axis A ‘);
 Writeln(‘ Axis B’);
 Write(‘ Index WrapAround ‘);
 Writeln(’ Index WrapAround ’);
 Write(’ Count Status Interrupts Interrupts ‘);
 Writeln(‘ Count Status Interrupts Interrupts‘);
 { display counter values and status until key pressed }
 while(not KeyPressed) do
 begin
 lCntA := te5312BeadCntr(AXIS_A);
 lCntB := te5312ReadCntr(AXIS_B);
 eStatA := te5312ReadSts(AXIS_A);
 eStatB := te5312ReadSts(AXIS_B);
 Write(CR);
 Write(lCntA : 8, sStatA : 5, wIndexA :10, wCarryA : 11);
 Write(lCntB : 13, sStatB : 5, wIndexB :10, wCarryB : 11);
 end;
 Writeln;
 { disable interrupts before exiting program }
 sTemp := te5312DisableIRQ;
end.

�

Model 5312B Software Guide - Document version no. 1.30 21

3 Interrupt Handling

3.1 Introduction
The 5312 driver greatly simplifies the use of interrupts. When an interrupt occurs, the driver
handles all interrupt overhead and then calls your routines to act on the interrupts.

NOTE

3.1.1 Enabling Interrupts
The first routine you need to call is te5312EnabIeIRQ before interrupts can be used. At the
end of the program, call te5312DisabIeIRQ to restore the interrupt vectors and interrupt masks
to their original state. You need to supply two routines to handle the two interrupt sources—
overflow/underflow and index valid. The two routines are described below.

For BASIC, the names given below are fixed. The linker will expect to find two routines with
these names. For C or Pascal the routines can be named anything because the address rather
than the name of each routine is passed to the te5312lnterruptHooks routine.

te5312WrapAroundAlert This routine will be called when the encoder generates

either a borrow or a carry. It will receive one argument by
reference—the axis number of the encoder causing the
interrupt.

te5312lndexAlert This routine will be called when the index input goes

active. It will receive one argument by reference—the axis
number corresponding to the index input causing the
interrupt.

3.2 Interrupts in C or Pascal
The example programs in section 2 show how interrupts are set up. Interrupt hook routines are
installed by calling te5312lnterruptHooks. A warning will be generated if you attempt to
install improper routines (routines that do not accept the proper number and type of arguments).
Remember to turn off stack checking for the interrupt hook functions and any routines they call.

3.3 Interrupts in BASIC
The example program given earlier shows how interrupts are used. You must provide two
routines—te5312WrapAroundAlert and te5312lndexAlert.

�

Model 5312B Software Guide - Document version no. 1.30 22

One note about using interrupts in the QuickBASIC environment: it can be done, but the
interrupt handling routines must be in the Quick Library te5312qb.qlb. To do this, use the file
INTR5312.BAS to write your interrupt hook routines. Then run the batch file QLB5312.BAT to
compile INTR5312.BAS and add it to the libraries—te53l2qb.qlb and te53l2qb.lib. The library
te53l2qb.lib is an alternative to using te5312b.lib and is supplied to provide a command line
equivalent library to the Quick Library. You can develop a program in the environment with the
Quick Library and then compile and link on the command line without modification. If you use
te5312b.lib, you will have to add your interrupt hook routines to the source file before compiling.

3.4 General Notes on Using Interrupts
There are some cautions to be aware of when using interrupts:

DOS is not re-entrant. If an interrupt is generated while in a DOS call, the interrupt routine can
not call another DOS function. With Basic, C, and Pascal, DOS is usually used for screen
output, keyboard input, and disk and file I/O. We recommend you not use DOS in your interrupt
routines. One method for avoiding this is to set a global flag in your interrupt routine, and then
have the main routine check this flag and call DOS when the flag is set.

For example, if you wanted to print a message when an interrupt occurred, the interrupt routine
sets a flag. Then when the main program sees the flag set, it will print the message.

Turn off stack checking when using interrupts with C. If you encounter a stack overflow, stack
checking is not turned off. Check the compiler manual for instructions on how to do this.

�

Model 5312B Software Guide - Document version no. 1.30 23

4 Alphabetical Routine Summary

The 5312 driver software consists of the following routines. A more complete description of
each is given in Section 5, Driver Routine Descriptions.

 Prefix Variable Type
c character, signed or unsigned
s short integer, signed
w short integer, unsigned
l long integer, signed

dw long integer, unsigned
p pointer

te5312DisabIeIRQ() Restore old interrupt vectors and disables

PC IRQ lines.

te5312EnableIRQ(wBoardNum, Set up interrupt vector and enable PC

sIRQLevel) IRQ line on the bus.

te5312lndexAlertOff(sAxisNum) Disable index interrupt.

te5312lndexAlertOn(wAxisNum) Enable index interrupt.

te5312lnitBoard(wBoardAddr, Initialize 5312 board.

wNumAxes)

te5312InitEncoder(sAxisNum, sMCR Initialize encoder.

sICR, sOCCR, sQR)

te5312InitSw() Initialize software.

te5312lnterruptHooks(*WrapAroundHook, Define hooks to user functions called on

*IndexHook) interrupts (not usable in BASIC).

te5312LoadCntr(sAxisNum, lValue) Load encoder counter.

te5312LoadPr(sAxisNum, lValue) Load encoder preset register.

te5312ReadCntr(sAxisNum) Read encoder counter.

te5312ReadOL(sAxisNum) Read encoder output latch.

te5312ReadSts(sAxisNum) Read encoder status.

�

Model 5312B Software Guide - Document version no. 1.30 24

te5312WrapAroundAlertOff(sAxisNum) Disable borrow/carry interrupt.

te5312WrapAroundAlertOn(sAxisNum) Enable borrow/carry interrupt.

te5312WriteCmd(sAxisNum, sCmd) Write encoder command.

�

Model 5312B Software Guide - Document version no. 1.30 25

5 Driver Routine Descriptions
Notational Conventions

The declarations for each routine is shown for C , BASIC, and Pascal.

In C or Pascal, the type of a parameter is denoted by its one letter small-case prefix:

 Prefix Variable Type
c Character, signed or unsigned
s Short integer, signed
w Short integer, unsigned
I Long integer, signed

dw Long integer, unsigned
p Pointer

F or instance, sAxisNum indicates that this variable is a unsigned short integer.

In BASIC, the type of a parameter is always explicitly indicated by a type suffix:

Prefix variable Type
% Short integer, signed or unsigned
& Long integer, signed or unsigned
$ Character, signed or unsigned

For instance, AxisNum% indicates the this variable is a short integer.

Routine names are printed in bold sans serif font, te53l2InitSw.

Parameter names are printed in italics, sAxisNum.

Constants are defined with all caps, TE5312CMD_QR. Underscores must be replaced by
periods for use with BASIC.

�

Model 5312B Software Guide - Document version no. 1.30 26

te5312DisabIeIRQ

Disable Interrupt Request

Declarations:

C: short te53l2DisableIRQ(void);

BASIC: DECLARE FUNCTION te5312DisableIRQ%()

Pascal: function te53l2DisableIRQ : integer;

Description:

This routine masks the IRQ lines chosen with te5312EnableIRQ calls and restores the
corresponding interrupt vectors to their original values. If you call te5312EnableIRQ at least
once, call te5312DisableIRQ before exiting the program.

Return Code:

(0) No error.

See Also:

te5312EnabIelRQ

�

Model 5312B Software Guide - Document version no. 1.30 27

te5312EnableIRQ

Enable Interrupt Request

Declarations:

C: short te5312EnableIRQ(unsigned short wBoardNum, short

sIRQLevel);

BASIC: DECLARE FUNCTION te5312EnableIRQ%(BYVAL BoardNum%, BYVAL

IRQLevel%)

Pascal: function te5312EnableIRQ(wBoardNum : word; sIRQLevel :

integer) : integer;

Description:
This routine reassigns the appropriate interrupt vector to point to the driver interrupt handler for
the specified board, saving the old vector. It also unmasks the interrupt on the PC.

Each board must use a different IRQ number. The old vectors can later be restored with the
te5312DisableIRQ routine.

Parameters:

BoardNum Board number (0 to 5).

IRQLevel IRQ number (2 to 7).

Return Code:

(0) No error.

(-1) Invalid board number or IRQ number or the IRQ number has previously been assigned to

another board.

See Also:

te5312EnabIelRQ

�

Model 5312B Software Guide - Document version no. 1.30 28

te5312IndexAlertOff

Disable Index Interrupt

Declarations:

C: short te5312IndexAlertOff(short sAxisNum);

BASIC: DECLARE FUNCTION te5312IndexAlertOff%(BYVAL AxisNum%)

Pascal: function te5312IndexAlertOff(sAxisNum : integer) : integer;

Description:

This routine disables the index input for the specified axis from causing an interrupt when index
goes active. The index input can be either active HIGH or active LOW depending on jumper
settings—W13, W16, W50, and W51.

Parameters:

AxisNum Axis number (0 to 23) or global number (-1 to -6).

Return Code:

(0) No error.
(-1) Invalid axis number.

See Also:

te5312lndexAlertOn

�

Model 5312B Software Guide - Document version no. 1.30 29

te5312lndexAlertOn

Enable Index Interrupt

Declarations:

C: short te5312IndexAlertOn(short sAxisNum);

BASIC: DECLARE FUNCTION te5312IndexAlertOn%(BYVAL AxisNum%)

Pascal: function te5312IndexAlertOn(sAxisNum : integer) : integer;

Description:

This routine enables the index input for the specified axis to cause an interrupt when the input
goes active. The index input can be either active HIGH or active LOW depending on jumper
settings—W13, W16, W50, and W51.

Parameters:

AxisNum Axis number (0 to 23) or global number (-1 to -6).

Return Code:

(0) No error.

(-1) Invalid axis number.

See Also:

te5312lndexAlertOff

�

Model 5312B Software Guide - Document version no. 1.30 30

te5312InitBoard

Initialize Board

Declarations:

C: short te5312InitBoard(unsigned short wBoardAddr, unsigned

short wNumAxes);

BASIC: DECLARE FUNCTION te5312InitBoard%(BYVAL BoardAddr%, BYVAL

NumAxes%)

Pascal: function te5312InitBoard(wBoardAddr, wNumAxes : word) :

integer;

Description:

This routine initializes a 5312 board jumpered to the given address. Call the routine
te53l2lnitSw first to initialize the software, then call te53l2lnitBoard once for every
5312 board in the system.

Each board in the system will be sequentially assigned a board number from 0 to 5 used to
identify the board in calls to other routines. Likewise, each encoder in the system will be
sequentially assigned an axis number from 0 to 23. Each board will be assigned from 0 to 4 axis
numbers depending on how many encoders are specified on the board.

Each board will also be assigned a global number, from —1 to —6. You can use a global
number in place of an axis number in routines that write to an encoder. In this case, all encoders
on a corresponding board will be serviced at the same time.

te53l2lnitBoard initializes the board interrupt controller and each encoder.
For each encoder, te53l2lnitBoard resets the Master Control Register (MCR)
to:

TE5312MCR_ADDR_RST | |

TE5312MCR_FLAG_RST | |

TE5312MCR_CMP_RST | |

TE5312MCR_MASTER_RESET.

�

Model 5312B Software Guide - Document version no. 1.30 31

The Input Control Register (ICR) is set to the constant TE5312ICR_ENABLE enabling the
phase inputs.

The Output / Counter Control Register (OCCR) is cleared to zero.

The Quadrature Register (QR) is set to the constant TE5312QR_X4 putting the board into 4x
quadrature mode.

You can override this call by calling te53l2InitEncoder.

Parameters:

BoardAddr Address of the 5312 board.
NumAxes Number of encoders on the board.

Return Code:

(0) No error.

(-1) Too many boards initialized, invalid board address, or invalid number of axes.

(>0) One or more axes failed initialization. If bit zero is set, the first axis failed initialization;

if bit one is set, the second axis failed initialization, etc.

 An axis is assigned an axis number even if it fails initialization.

�

Model 5312B Software Guide - Document version no. 1.30 32

te5312lnitEncoder

Initialize Encoder

Declarations:

C: short te5312InitEncoder(short sAxisNum, short sMCR, short

sICR, short sOCCR, short sQR);

BASIC: DECLARE FUNCTION te5312InitEncoder%(BYVAL AxisNum%, BYVAL

MCR%, BYVAL ICR%, BYVAL OCCR%, BYVAL QR%)

Pascal: function te5312InitEncoder(sAxisNum; sMCR, sICH, sOCCR,

sQR : integer) : integer;

Description:

This routine writes the specified commands to the four command registers of an axis.

Parameters:

AxisNum Axis number (0 to 23) or global number (-1 to -6).

MCR Master Control Register command to be written.

ICR Input Control Register command to be written.

OCCR Output /Counter Control Register command to be written.

QR Quadrature Control command to be written.

For MCR, OR any of the following constants together:

TE5312MCR_ADDR_RST Resets the address counters.

TE5312MCR_CNT_OL Loads the Output Latch with the counter value.

TE5312MCR_FLAG_RST Zeroes the counter, resets the borrow & carry flags, and

sets the sign flag.

�

Model 5312B Software Guide - Document version no. 1.30 33

TE5312MCR_PR_CNT Loads the counter with the value of the Preset Register.

TE5312MCR_CMP_RST Resets the compare flag.

TE5312MCR_MASTER_RST Does a master reset.

For ICR, OR any of the following constants together:

TE5312ICR_DIR Phase inputs are pulse and direction. If not specified, the

inputs are pulse up and pulse down.

TE5312ICR_INC Counter is manually incremented.

TE5312ICR_DEC Counter is manually decremented.

TE5312ICR_ENABLE Phase inputs are enabled.

TE5312ICR_GATE The ABGT/RCTR input (which can be jumpered to the

index input) is set up as the phase input enable / disable
gate. If not specified, this input is set up as the counter
external reset input.

TE5312ICR_LATCH The LCTR / LLTC input (which can be jumpered to

the index input) is set up as the external load command
input for the Output Latch. If not specified, this input is set
up as the external load command input for the counter.

For OCCR, OR any of the following constants together:

TE5312OCCR_BCD If specified, the counter will be in BCD mode. If not

specified, the counter will be in binary mode.

TE5312OCCR_NOCYCLE If specified, the counter will not continually cycle.

TE5312OCCR_DIVIDE Counter is set to divide-by-n mode.

TE5312OCCR_CLOCK Sets counter to 24-hour clock mode.

TE5312OCCR_ACTIVE_LOW Enables active LOW carry & borrow pulses on Cy & By

outputs.

TE5312OCCR_TOGGLE Enables carry & borrow toggle flip-flops on Cy & By

outputs.

�

Model 5312B Software Guide - Document version no. 1.30 34

TE5312OCCR_ACTIVE_HIGH Enables active HIGH carry & borrow pulses on Cy & By

outputs.

TE5312OCCR_COMPARE Enables compare pulses on Cy output and compare toggle

flip-flop on By output.

The last four options are mutually exclusive.

For QR, one of the following constants can be specified:

TE5312QR_X1 1x Quadrature mode.

TE5312QR_X2 2x Quadrature mode.

TE5312QR_X4 4x Quadrature mode.

If zero is specified for QR, quadrature is disabled.

Return Code:

(0) No error.
(-1) Invalid axis number.

�

Model 5312B Software Guide - Document version no. 1.30 35

te5312lnitSw

Initialize Software

Declarations:

C: short te53l2InitSw(void);

BASIC: DECLARE FUNCTION te53l2InitSw%()

Pascal: function te53l2InitSw : integer;

Description:

This routine initializes the 5312 software and must be called before calling any other driver
routines.

Return Code:

The version number (four hex digits) of the 5312 driver is returned.

See Also:

te5312lnitBoard

�

Model 5312B Software Guide - Document version no. 1.30 36

te5312lnterruptHooks

Install Interrupt Hooks

Declarations:

C: typedef void te5312HookType(short *psParm);

void InterruptHooks(te5312HookType *WrapAroundHook,
 te5312HookType *IndexHook);

BASIC: not supported.

Pascal: te5312HookType = procedure(var psParm : integer);

procedure InterruptHooks(WrapAroundHook, IndexHook :
te53l2HookType);

Description:

Installs two routines as interrupt hooks to be called when the appropriate interrupt is generated.
See the discussion in section 3 on interrupt handling.

Parameters:

WrapAroundHook Routine to be called on a carry/borrow interrupt.
IndexHook Routine to be called on an index interrupt.

�

Model 5312B Software Guide - Document version no. 1.30 37

te5312LoadCntr

Load Counter

Declarations:

C: short te5312LoadCntr(short sAxisNum, long lValue);

BASIC: DECLARE FUNCTION te5312LoadCntr%(BYVAL AxisNum%, BYVAL

Value&)

Pascal: function te5312LoadCntr(sAxisNum : integer; lValue :

longint) : integer;

Description:

This routine loads the specified value into the counter of the specified axis. It does this by first
loading the value into the preset register and then commanding that the value of the preset
register be transferred to the counter.

Parameters:

AxisNum Axis number (0 to 23) or global number (—1 to —6).
Value Value to be loaded into the counter.

Return Code:

(0) No error.

(—1) Invalid axis number.

See Also:

te5312Readcntr

�

Model 5312B Software Guide - Document version no. 1.30 38

te5312LoadPr

Load Preset Register

Declarations:

C: short te5312LoadPr(short sAxisNum, long lValue);

BASIC: DECLARE FUNCTION te5312LoadPr%(BYVAL AxisNum%, BYVAL

Value&)

Pascal: function te5312LoadPr(sAxisNum : integer; lValue :

longint) : integer;

Description:

This routine loads the specified value into the preset register of the specified axis.

Parameters:

AxisNum Axis number (0 to 23) or global number (-1 to -6).
Value Value to be loaded into the counter.

Return Code:

(0) No error.

(-1) Invalid axis number.

�

Model 5312B Software Guide - Document version no. 1.30 39

te5312ReadCntr

Read Counter

Declarations:

C: long te53l2ReadCntr (short sAxisNum);

BASIC: DECLARE FUNCTION te5312ReadCntr&(BYVAL AxisNum%)

Pascal: function te5312ReadCntr(sAxisNum : integer) : longint;

Description:

This routine reads and returns the current value of the counter.

Parameters:

AxisNum Axis number (0 to 23).

Return Code:

Current counter value.
(-1) Invalid axis number.

�

Model 5312B Software Guide - Document version no. 1.30 40

te5312ReadOL

Read Output Latch

Declarations:

C: long te5312ReadOL(short sAxisNum).

BASIC: DECLARE FUNCTION te5312ReadOL&(BYVAL AxisNum%)

Pascal: function te5312ReadOL(sAxisNum : integer) : longint;

Description:

This routine reads and returns the value of the output latch.

Parameters:

AxisNum Axis number (0 to 23).

Return Code:

Output latch value.
(-1) Invalid axis number.

�

Model 5312B Software Guide - Document version no. 1.30 41

te5312ReadSts

Read Status

C: short te5312ReadSts(short sAxisNum);

BASIC: DECLARE FUNCTION te5312ReadSts%(BYVAL AxisNum%)

Pascal: function te5312ReadSts(sAxisNum : integer) : integer;

Description:

This routine reads and returns the status register.

The bits of the status register formatted above can be masked out with the following constants:

TE5312STS_BORROW Borrow Flag.

TE5312STS_CARRY Carry Flag.

TE5312STS_COMPARE Compare Flag.

TE5312STS_SIGN Sign Flag.

TE5312STS_UP Direction is up.

�

Model 5312B Software Guide - Document version no. 1.30 42

Parameters:

AxisNum Axis number (0 to 23).

Return Code:

Status Byte.

(—1) Invalid axis number.

�

Model 5312B Software Guide - Document version no. 1.30 43

te5312WrapAroundAlertOff

Disable Borrow / Carry Interrupt

Declarations:

C: short te5312WrapAroundAlertOff(short sAxisNum);

BASIC: DECLARE FUNCTION te5312wrapAroundAlertOff%(BYVAL AxisNum%)

Pascal: function te5312wrapAroundAlertOff(sAxisNum : integer) :

integer;

Description:

This routine disables the carry or borrow interrupt for the specified axis.

Parameters:

AxisNum Axis number (0 to 23) or global number (-1 to -6).

Return Code:

(0) No error.

(-1) Invalid axis number.

See Also:

te5312WrapAroundAlertOn

�

Model 5312B Software Guide - Document version no. 1.30 44

te5312WrapAroundAlertOn

Enable Borrow/Carry Interrupt

Declarations:

C: short te5312WrapAroundAlertOn(short sAxisNum);

BASIC: DECLARE FUNCTION te5312WrapAroundAlertOn%(BYVAL AxisNum%)

Pascal: function te53l2WrapAroundAlertOn(sAxisNum : integer) :

integer;

Description:

This routine enables the carry or borrow interrupt for the specified axis.

Parameters:

AxisNum Axis number (0 to 23) or global number (—1 to —6).

Return Code:

(0) No error.

(-1) Invalid axis number.

See Also:

te5312WrapAroundAlertOff

�

Model 5312B Software Guide - Document version no. 1.30 45

te5312WriteCmd

Write Command

Declarations:

C: short te5312WriteCmd(short sAxisNum, short sCmd);

BASIC: DECLARE FUNCTION te5312WriteCmd%(BYVAL AxisNum%, BYVAL

Command%)

Pascal: function te5312WriteCmd(sAxisNum, sCmd : integer) :

integer;

Description:

This routine writes the specified command to the specified axis.

Parameters:

AxisNum Axis number (0 to 23) or global number (-1 to -6).
Command Command to be written.

Command is constructed by ORing several constants together. It should always include one of
the following four constants which identify the command register:

TE5312CMD_MCR Master Control Register.

TE5312CMD_ICR Input Control Register.

TE5312CMD_OCCR Output / Counter Control Register.

TE5312CMD_QR Quadrature Register.

�

Model 5312B Software Guide - Document version no. 1.30 46

If TE5312CMD_MCR is included, any of the following constants can also be ORed together:

TE5312MCR_ADDR_RST Resets address counters.

TE5312MCR_CNT_OL Loads Output Latch with counter value.

TE5312MCR_FLAG_RST Zeroes counter, resets borrow/carry flags, sets
sign flag.

TE5312MCR_PR_CNT Loads counter with value of Preset Register.

TE5312MCR_CMP_RST Resets compare flag.

TE5312MCR_MASTER_RST Master reset.

If TE5312CMD_ICR is included, any of the following constants can also be ORed together:

TE5312lCR_DIR Phase inputs are pulse and direction. If not
specified, the inputs are pulse up/down.

TE5312ICR_INC Counter manually incremented.

TE5312lCR_DEC Counter manually decremented.

TE5312lCR_ENABLE Phase inputs enabled.

TE5312lCR_GATE ABGT/RCTR input (which can be jumpered to the

index input) set up as phase input enable / disable
gate. If not specified, input is setup as counter
external reset input.

TE5312lCR_LATCH The LCTR / LLTC input (which can be jumpered to

the index input) set up as external load command
input for Output Latch. If not specified, input set up
as external load command input for counter.

�

Model 5312B Software Guide - Document version no. 1.30 47

If TE5312CMD_OCCR is included, any of the following constants can also be ORed together:

TE5312OCCR_BCD Counter in BCD mode. If not specified, counter in

binary mode.

TE5312OCCR_NOCYCLE Counter not continual cycle.

TE5312OCCR_DIVIDE Counter set to divide-by-n mode.

TE5312OCCR_CLOCK Counter in 24-hour clock mode.

TE5312OCCR_ACTIVE_LOW Enables active LOW carry/borrow pulses on Cy and
By outputs.

TE5312OCCR_TOGGLE Enables carry/borrow toggle flip-flops on Cy and

By outputs.

TE5312OCCR_ACTIVE_HIGH Enables active HIGH carry/borrow pulses on Cy
and By outputs.

TE5312OCCR_COMPARE Enables compare pulses on Cy output and compare

toggle flip-flop on By output.

The last four options are mutually exclusive.

If TE5312CMD_QR is included, one of the following constants can also be ORed together:

TE5312QR_X1 1x Quadrature mode.

TE5312QR_X2 2x Quadrature mode.

TE5312QR_X4 4x Quadrature mode.

If none of the last three options is specified, quadrature is disabled.

Return Code:

(0) No error.

(-1) Invalid axis number.

�

Model 5312B Software Guide - Document version no. 1.30 48

6 Demonstration Program

The 5312 includes a demonstration program designed to support the actual operation and general
capabilities of the card. Each axis in the program can operate independently in any of the 5312
operating modes — quadrature, pulse/direction, and up/down counting. To run the program,
insert the software diskette into drive A (or B), and then at the prompt type:

A:\EXE\TEDEMO <Enter> or

B:\EXE\TEDEMO <Enter>

After a moment, a brief message describing the program will appear on your screen.
Pressing any key will continue the program, and the following screen will be displayed:

The program will ask you to define input parameters. Parameter choices can be seen in the
window labeled HELP which appears to the right of the INPUT PARAMETERS window. For
example, when choosing the number of axes, the HELP box will read the message “1- 4”
denoting the number of axes that are possible to configure during the test.

�

Model 5312B Software Guide - Document version no. 1.30 49

For an explanation of the parameter to be set, press <Fl>. A help screen will appear containing a
definition of the parameter. For example, pressing <Fl> when the cursor is at the PR Value will
bring up the following screen:

After setting all the parameters and after setting the Counter Preset Value parameter, pressing
<Enter> will cause values to be displayed in the boxes above. The actual number of boxes
displaying data depends on the number of axes chosen.

The following is a brief description of each value:

Dec/Hex: Represents the count values. Dec represents the Decimal count;

Hex represents the Hexadecimal count.

Direction: Direction to which the count is heading. The counter will either be

heading up or down.

Sign: Indicates whether the counter has overflowed / underflowed. It

will read plus when over flowed and minus when underflowed.

Compare/Carry/Borrow: These are toggles. Each one will read either HIGH or LOW.

Compare changes state every time the count equals the PR Value. Carry changes state every
time there is an overflow. Borrow changes state every time there is an underflow. Refer to
section 2 of this manual for further value descriptions in the Input Parameters.

To escape out to a DOS prompt, press <Esc> to exit the parameter list, and press <E> to exit
TEDEMO.

�

Model 5312B Software Guide - Document version no. 1.30 50

7 Visual BASIC Demo Program

Overview
The Model 5312 also includes a 16-bit Windows Visual BASIC program that demonstrates the
operation and general capabilities of the card. Each axis in the program can operate
independently in any of the Model 5312 operating modes — quadrature, pulse/direction, and
up/down counting.

The following appendix takes users through installation and operation of this demo. It assumes
that they have the proper hardware configuration, including a properly configured 5312 plugged
into the backplane of a Windows-equipped IBM compatible PC. Please see the Model 5312
Technical Reference for hardware installation procedures.

Software Installation
The 5312 Visual BASIC demo runs under Windows 3.1 or Windows 95. The common
procedure is to run the file setup.exe from your 3½” floppy drive (a:\ or b:\). How you do this
under the two environments depends on their respective user interfaces. The following is a
detailed procedure for each environment.

Windows 3.1
Insert your 3½” 5312 Visual BASIC Demo diskette into your a: or b: floppy drive. In the
Program Manager, pull down the File menu and select Run. You will get a dialogue box with
one data field. Type a:\setup, or b:\setup and press <enter> or click OK. Windows 3.1 will run
the installation procedure. Follow the steps as prompted by this procedure.

Windows 95
Insert your 3½” 5312 Visual BASIC Demo diskette into your a: or b: floppy drive. Click on the
Start button at the lower left-hand part of your screen. Click on Run. Choose Browse and select
Drive A: (or B: where appropriate). Click OK or press <enter> and Windows will run the
installation procedure. Follow the steps as prompted by this procedure.

�

Model 5312B Software Guide - Document version no. 1.30 51

User’s Guide

Double click on the VB5312 icon. The main user menu should appear as shown in figure 1.

Figure 1: Main User Menu.

Note: if the board is not set at the correct address, you will get a “Hardware Initialization Error”
during program startup. The default address is 300 hex. If another board in your backplane is
configured at that address, you will have a conflict between that board and the Model 5312. To
solve this conflict, follow the procedure below.

• Read the 5312 Technical Reference regarding changing board addresses. In this section,
note how the switches on the board enable you to configure the board for a non-default
address.

• In the menu depicted in Figure 1, pull down Options, choose Board Address and then

select the address appropriate to the switch settings.

�

Model 5312B Software Guide - Document version no. 1.30 52

Demo Modes

The first logical operation is to select the demo mode you wish to operate in. To do this, pull
down Demo Modes as shown in figure 2.

Figure 2 Main User Menu with Demo Modes Pulled Down

�

Model 5312B Software Guide - Document version no. 1.30 53

When you select a mode, a model dialogue box will appear. For example, if you select
quadrature mode, the dialogue box shown in figures 3 will appear.

Figure 3 Quadrature Mode Dialogue Box

If you need to enter an initial count of other than 0, enter the desired count in the Initial Count
data field. Then click OK or press <enter> to start the demo. The Reset All command button on
the main user menu will reset all counters to zero. This is the default value. Dialogue boxes that
appear when the user selects other modes are very similar to the above.

Developer’s Guide
This demo was developed under Visual BASIC 4.0. For those unfamiliar with Visual BASIC,
there are two primary types of modules developers create when they write a program — form
and code modules. Form modules specify the form that GUI windows will take. Code modules
are the guts of the program. They do everything from driving the system to enabling certain
operations to take place within the form modules when users specify appropriate values. The
architecture of any Visual BASIC program consists of a project file with some code and form
modules in it.

The 5312 program architecture consists a project file (VB5312.VBP) of seven form modules and
three code modules. The form modules enable the user to interact with the available GUI
interfaces. The code modules run the board at a low level. We do not offer the source for these
modules, so this section is for your information only.

�

Model 5312B Software Guide - Document version no. 1.30 54

Form Modules
The main form module is FORM12.FRM. It is comprised of menu items, text boxes and a
command button. See Figure 4.

Figure 4 Primary form Module

The secondary form modules (DEMO1DLG.FRM through DEMO5DLG.FRM) are all quite
similar. They comprise the dialogue boxes for the various demo modes. They consist of a large
read-only text box that provides the information about the mode in question, a small changeable
text box, two command buttons and a check box. See figure 5 (following figure) for a template.

�

Model 5312B Software Guide - Document version no. 1.30 55

Figure 5 Template for form modules enabling demo-mode dialogue boxes

The last form module (ADDR.FRM) enables the user to enter board address values. It is not
pictured here.

Code Modules
The three code modules in the 5312 demo (START.BAS, 5312H.BAS, AND
DECL.BAS) drive the program. They are described in more detail below.

START. BAS
This code module is called on program startup. It runs through all the board initialization
routines, including the init software, init board and init global variables.

5312H.BAS
This module contains board register constants, dynamic linking library (DLL) function
declarations and DLL prototypes.

DECL.BAS
This code module contains program constants, user-defined types and global variables.

�

Model 5312B Software Guide - Document version no. 1.30 56

8 LSI Chip Applications Note
Introduction
The following is an application note for developers of products with Model 5312. Those who
preset their counter values relatively high (thousands of counts, typical) possibly won’t notice
this problem in most applications. In fact, with thousands of units in the field, we just recently
discovered the bug.

Problem Definition
The LSI 7166 chipset onboard these models exhibits a minor logic anomaly. The problem is
most noticeable on systems using relatively low preloaded count values in the 7166. For
example, if you preset your counter at 5, the first count loop is decremented as 5, 4, 3, 2, 1, 0
then carries as the count rolls on to ffffff. Thus, the count loop consists of 6 states. On the
second and all subsequent count loops, as the counter is decremented through zero, a borrow or
carry condition occurs. The counter-is then reset and preloaded with a value equal to the original
value minus 1, i.e. [preload - borrow] or [5-1 = 4 (see figure D.1).

LSI Chipset Counter Problem
This makes the problem associated with low counts per index manifest.

1.2 Problem Solution
The solution to this problem is to preload the counter to ‘1’, load the preset register to ‘5’, do a
manual decrement twice. This will cause the counter to be reloaded with the correct value
[preload - borrow]. You can perform this before the main counter control loop. To solve the
problem at the register level, perform the increment/decrement at bits 2 and 1 of the Input
Control Register during the initialization and configuration stage. (See the manual.) To do this
with the software drivers, follow the source below (in C). In this example, it is assumed that the
axis is 0 and the desired counts per update cycle is 5. Of course, you will need to pass axis and
desired counts per cycle parameters appropriate to your application.

/ * LOU COUNTS PER INDEX INITIALIZATION ROUTINE * /
te5312DisableIRQ(); //———Mask Interrupt
te5312LoadPr (Axis0, 1); //———Preload Counter to 1
te5312WriteCmd (Axis0, TE5312CR_DEC); II——— Decrement Counter te5312WriteCmd
(Axis0, TE5312CR_DEC); II——— Twice
te5312LoadPr (Axis0, 5); //———Reload Desired Cycle Counter
/ * Ready to Go * /

�

Model 5312B Software Guide - Document version no. 1.30 57

9 Using the Model 5312 Windows NT Drivers

NOTE

Installation
The Model 5312 Windows NT drivers diskette contains all the necessary files for complete NT
operation. This operation is supported under Windows NT 4.0.

The Installation Program can be used if Windows NT is installed in your default directories. If
NT is installed in another directory, the files will have to be copied manually into the correct
directories. Please see the Manual Installation section below for complete instructions.

Normal Installation
• Make sure that you are logged into your NT workstation and that you have administrative

user rights.

• Insert the driver diskette. Click Start on your NT desktop.

• Go to Programs. Click on MS -DOS. Type the drive letter of your diskette.

• Type "install" and press Enter. Kernel and user mode drivers will be copied to the
appropriate directories, and an appropriate key will be added to the registry.

• Remove the diskette. Restart the computer.

• T5312NT.sys is shipped as a manual start driver. To start the driver, go to the MS-DOS
prompt and type "net start T5312NT." The words, "Service started successfully," should
appear. If any other message appears, please see the Troubleshooting Section below.

• Upon a successful start of the 5312NT kernel mode driver, the Parameters - Start option
may be changed from 3 to 2 in the registry for automatic start operation. See the following
page for instructions on how to modify parameters in the registry.

Manual Installation
• Make sure that you are logged into your NT workstation and that you have administrative

user rights.

• Insert the driver diskette. Click Start on your NT desktop.

• Copy TE5312NT.dll into your WINNTDIR\SYSTEM32 directory.

• Copy T5312NT.sys into your WINNTDIR\SYSTEM32\DRIVERS directory.

• Type “DINI T5312NT.ini”

• Remove the diskette. Restart the computer.

�

Model 5312B Software Guide - Document version no. 1.30 58

• To start the driver, go to the MS - DOS prompt and type "net start T5312NT” The words,
"Service started successfully", should appear. If any other message occurs, please see the
Troubleshooting Section below.

• Upon a successful start of the 5312NT kernel mode driver, the Parameters - Start option
may be changed from 2 to 3 in the registry for automatic start operation. Please see the
section below for instructions on how to modify parameters in the registry.

Troubleshooting
If you get, "System error 87," the parameter is incorrect. This means you have a conflicting
address and interrupt number, and that another NT driver has possession of one or both of the
parameters.

To correct this, run WINMSD. Look under Resources and I/0 Port for information about which
IRQs and lO Ports are assigned. Disable the conflicting driver or change the conflicting drivers'
IRQ and/or port I/0, or change the 5312 NT parameters as described below

If you get, "System error 32," the system cannot find the file specified. This will happen if you
did not copy over the kernel mode driver or if you have it in the wrong directory.

If you get, "The service name is invalid," the registry key for the driver is not set up. Please see
"Modifying the Registry" below for instructions on how to verify that the key is present.

If you are still having problems, please contact ACS-Tech 80 at the numbers shown at the
beginning of this document for assistance. Our applications engineers will be happy to work
with you.

Modifying the Registry
To modify the registry,

• Click Start on the Windows NT Desktop. Click "Run." Type "Regedit." Click OK.

• Click HKEY_LOCAL_MACHINE.

• Click System. Click Current Control Set. Click Services. Click T5312NT.

To modify the start mode, click the T5312NT folder. To change either the address or the IRQ
number, select the Parameters folder.

• To change the value, click the name of the value you wish to change. Then click Edit. Click
Modify.

• Enter the new value and click OK. Close the registry editor and restart the computer.

�

Model 5312B Software Guide - Document version no. 1.30 59

Driver Overview
Using the ACS-Tech80 Model 5312 under Windows, NT requires the use of both a kernel mode
driver and a user mode driver. The kernel mode driver provides I/O communication between the
user mode driver and the 5312 board. The user mode driver provides communication between
the application and the kernel mode driver.

NT Functions
The following functions have been added for NT operation:

OpenFileLink
CloseFileLink
InitIntr
WaitForInt
IntRead
DisableIntr

Operations
Basic NT operation requires the addition of the OpenFileLink and CloseFileLink
functions.

Visual Basic Operation
To use Visual Basic:

• Place the OpenFileLink call before calling any other Model 5312 function calls, other
than InitSw. OpenFileLink can be put in Start-up Main or in an OK command button
in a dialogue box.

• Place CloseFileLink in the Main Window Unload Process of the main window form.
If you do not use CloseFileLink, you will lose file handles, and at some point, you
may not be able to start up the application.

Visual C++ Operation
When using Visual C++:

• Place the OpenFileLink call before calling any other Model 5312 functions, other than
InitSw. OpenFileLink can be put in either a constructor in or a command button.

• Place Close File Link in a destructor. If you do not use CloseFileLink, you will
lose file handles, and at some point, you may not be able to start up the application.

�

Model 5312B Software Guide - Document version no. 1.30 60

Using Interrupts
Interrupts are only supported under Visual C++.

Under VC++, the only interrupt-related functions are:

InitIntr
WaitForInt
IntRead
UserInputAlertOn
UserInputAlertOff

To set up for an interrupt operation, follow these directions:

To define a thread message, type:

@define WM_ON_THREAD (WM_USER + 1)

To create an instance of the int info structure, type:

INTSTATUS *PINTSTATUS

To declare and instance of CW.WThread:

CWinThread* pThread;

To prototype a function to handle the worker thread:

static UINT Poll(LPVOID pParm);

To create a corresponding function to process the worker thread:

UNIT userWindow::Poll (LPVOID pParm)

{

threadActive = TRUE; //Global variable to keep track
//of thread status

WaitForInt(); //Wait for the interrupt

//Post the Windows message.

::PostMessage((HWND) pParm,WM_ON_THREAD,0,0);

ThreadActive = FALSE;

return (0); //End of thread.

}

�

Model 5312B Software Guide - Document version no. 1.30 61

To prototype and create a function for determining the cause of the interrupt:

afx_msg long ProcInt (UINT wParam, Long 1Param)

long UserWindow:: ProcInt (UINT wParam, Long 1 Param)+

PINTSTATUS = IntRead();

//Put the next line in to report all interrupt occurrences.
//pThread = AfxBeginThread(Poll, (LPVOID) GetSafeHwnd());

if((PINTSTATUS->AxisNum == 0) && (PINTSTATUS -> CauseOfIntr == WRAP))

{

MessageBox(“Axis 1 Wrap Intr” “InterruptP”’MB_OK);

}
else if ((PINTSTATUS->AXISNUM == AXIS1) &&

 (PINTSTATUS -CauseOfIntr == INDEX))
}

MessageBox(“Axis 1 INDEX Intr”,“InterruptP,MB_OK):
}

To map the ProcInt function to the worker thread message:

ON_MESSAGE(WM_ON_THREAD, ProcInt)

To start the worker thread in an applications command button:

void UserWindow::RestartAll ()
{

 (void) te5312LoadCntr(0.0);
 (void) te5312WriteCmd(-1 TE5312MC_FLAG_RST);
 (VOID) TE5312WriteCmd(-1, TE5312MCR_CMP_RST);

if (IntrEnableFlag)
{

 Thread = AfxBeginThread (Pol,1, (LPVOID) GetSafeHwnd ();
}

�

Model 5312B Software Guide - Document version no. 1.30 62

Worker Thread Management
It is important to keep track of when a worker thread is started and when it is stopped.

Interrupting Axis Numbers
The interrupting axis numbers are directly reported. Interrupt causes are:

0 = WRAP

1 = INDEX.

�

Model 5312B Software Guide - Document version no. 1.30 63

DRIVER ROUTINE REFERENCES

OpenFileLink

Declarations:

C: int OpenFileLink(void)

Visual Basic: declare function OpenFileLink Lib_ “te5312NT” ()

As Integer

Description:

Opens a symbolic link between user and kernel mode drivers.

Parameters:

None

Return Code:

Returns 0 upon success.
Returns -1 upon failure.

See Also:

CloseFileLink

�

Model 5312B Software Guide - Document version no. 1.30 64

CloseFileLink

Declarations:

C: void CloseFileLink (void)

Visual Basic: declare function CloseFileLink Lib_ “te5312NT” ()

As Integer

Description:

Closes symbolic link between user and kernel mode drivers

Parameters:

None

Return Code:

Returns 0 upon success.
Returns -1 upon failure.

See Also:

OpenFileLink

�

Model 5312B Software Guide - Document version no. 1.30 65

Initlntr

Declarations:

C:: int InitIntr (void)

Description:

Retrieves an event object’s handle.

Parameters:

None

Return Code:

Returns 0 upon success.
Returns - 1 upon failure.

See Also:

WaitForInt

�

Model 5312B Software Guide - Document version no. 1.30 66

WaitForInt

Declarations:

C: void WaitForInt (void)

Description:

Waits for a system event.

Parameters:

None

Return Code:

None.

See Also:

InitInt, DisableIntr

�

Model 5312B Software Guide - Document version no. 1.30 67

IntRead

Declarations:

C: INTSTATUS* IntRead (void)

Description:

Allows access to data members of structure INTSTATUS.
These data members contain information about which axis incurred.
The interrupt and its cause (such as end of motion or user input.)

Parameters:

None

Return Code:

Returns a pointer to structure INTSTATUS.
Returns - 1 upon failure.

See Also:

file te5312w.h

Structure Members:

AxisNum
CauseOfInter

�

Model 5312B Software Guide - Document version no. 1.30 68

DisableIntr

Declarations:

C: voidDisableIntr (void)

Description:

Closes an event object’s handle

Parameters:

None

Return Code:

None

See Also:

InitIntr

�

Model 5312B Software Guide - Document version no. 1.30 69

10 Using the Model 5312 32-bit Windows Drivers

Installation

The Model 5312 Windows 32-bit NT drivers diskette contains driver files that will allow you to
use all 5312 functions except those relating to interrupts.

To begin installation, copy filesT5312_95.dll and T5312_95.vxd into the
\WINDOWS_SYSTEM directory. For Visual Basic operation, no other files are required.

Visual C++

For Visual C++, GUI applications, copy file T5312_95.lib into your Application Development
directory. You must also include T5312_95.lib in your application project.

For Visual C++ Console applications, copy files T53_98.lib and T5312_95.exp into your
Application Development directory. Include T5312_95.lib in your application project.

�

Model 5312B Software Guide - Document version no. 1.30 70

DRIVER ROUTINE REFERENCES

OpenTheDriver

Declarations:

C: void OpenTheDriver (void)

Description:

Opens a symbolic link between user and kernel mode driver.

Parameters:

None

Return Code:

Returns 0 upon success.
Returns - 1 upon failure.

See Also:

CloseTheDriver

�

Model 5312B Software Guide - Document version no. 1.30 71

CloseTheDriver

Declarations:

C: void CloseTheDriver (void)

Description:

Releases the file handle that is used by OpenTheDriver

Parameters:

None

Return Code:

None

See Also:

OpenTheDriver

�

Model 5312B Software Guide - Document version no. 1.30 72

11 Manual Addendum
Please incorporate the following into your ACS-Tech80 Software Guide under
“Troubleshooting.”

Linker Errors for C++ Users

“Unresolved external” error
An unresolved external linker error may be caused by one of two situations.

1. The user does not have the corresponding .LIB file for the .DLL used in the application. For

example, if a user is using TE5638W.DLL, he or she must have TE5638W.LIB in the VC++
project. This is because the .LIB file is what tells the linker where to look for functions.

The .LIB file is usually kept in the working directory, although it can be anywhere in the path.
The .DLL file is usually kept in the \WINDOWS\SYSTEM directory, although it to may be
anywhere in the path.

2. The customer has not disabled name mangling (Borland) or name coding (Microsoft) for the

header file (.H). To disable name mangling or name coding: (using the te5650 as an
example.)

extern “C”
{
 #include “te5650.h”
}

This must be done because the functions are prototyped in an .H file as opened to a .CPP file.
Because they are in a non-CPP file, they are considered external functions. If the functions were
prototyped in both a .CPP file and a .H file or a .C file, the linker wouldn’t know which file to
use. This means that any functions outside of a .CPP file gets name mangled unless the extern C
directive otherwise directs it. This feature of the C++ language is called type safe linkage.

If the extern C directive is not used, the project will compile correctly, but errors on the link
occur because the function names in the .OBJ file created by the compilation are mangled. These
function names do not match the unmangled function names in the .LIB file.

“Corrupted or missing file” error
The project builds up but the “corrupted or missing file” error occurs when the application runs.

This error is rare. It is caused when the user attempts to access a 16-bit DLL from a 32-bit
application or vice versa. Since the data word sizes are different, it is unable to accurately read
the file.

